44 resultados para SEROTYPE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The apxIVA gene, a recently discovered RTX determinant of Actinobacillus pleuropneumoniae, was shown to be species-specific. DNA hybridization experiments using probes for various regions of apxIVA revealed that the 3'-terminus of this gene was present in all 14 serotypes of A. pleuropneumoniae but absent from phylogenetically related species. A primer pair spanning this region specifically amplified a 422bp fragment in PCR experiments with DNA from the reference strains of the 14 serotypes and 194 field strains isolated from various geographic locations worldwide. DNA sequence analysis of PCR products derived from all serotypes were identical except in serotypes 3, 8, and 10, which showed minor differences. The PCR did not amplify any product when DNA from 17 different bacterial species closely related to A. pleuropneumoniae was used as template. In addition, the PCR was negative with DNA of several Actinobacillus sp. which were initially characterized as A. pleuropneumoniae using routine phenotypic and serological analyses but which were subsequently shown by 16S rRNA sequence analysis to belong to yet undefined Actinobacillus species. The sensitivity of the PCR was determined to be 10pg of A. pleuropneumoniae DNA. A set of nested primers amplified a 377bp fragment specifically with A. pleuropneumoniae DNA. DNA titration experiments using the flanking and nested primer pairs showed an improved level of sensitivity to approximately 10fg of genomic DNA. The nested PCR was used to monitor the spread of A. pleuropneumoniae in pigs experimentally infected with a virulent serotype 1 strain and housed in a controlled environment facility. A. pleuropneumoniae DNA could be detected by nested PCR in nasal swab samples of infected pigs receiving either a high dose (5x10(5)) or a low dose (1x10(4)) challenge and in unchallenged cohorts that were contact-infected by the inoculated animals. Furthermore, PCR confirmed the presence of A. pleuropneumoniae in 16/17 homogenates from necrotic lung lesions, while the bacterium was successfully recovered from 13 of these lesions by culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fourth type of RTX determinant was identified in Actinobacillus pleuropneumoniae and was designated apxIVA. When expressed in Escherichia coli, recombinant ApxIVA showed a weak haemolytic activity and co-haemolytic synergy with the sphingomyelinase (beta-toxin) of Staphylococcus aureus. These activities required the presence of an additional gene, ORF1, that is located immediately upstream of apxIVA. The apxIVA gene product could not be detected in A. pleuropneumoniae cultures grown under various conditions in vitro; however, pigs experimentally infected with A. pleuropneumoniae serotypes 1, 5 and 7 started to produce antibodies that reacted with recombinant ApxIVA 14 d post-infection, indicating that apxIVA is expressed in vivo. In addition, sera from pigs naturally and experimentally infected with any of the serotypes all reacted with recombinant ApxIVA. The apxIVA gene from the serotype 1 A. pleuropneumoniae type strain Shope 4074T encodes a protein with a predicted molecular mass of 202 kDa which has typical features of RTX proteins including hydrophobic domains in the N-terminal half and 24 glycine-rich nonapeptides in the C-terminal half that bind Ca2+. The glycine-rich nonapeptides are arranged in a modular structure and there is some variability in the number of modules in the ApxIVA proteins of different serotypes of A. pleuropneumoniae. The deduced amino acid sequences of the ApxIVA proteins have significant similarity with the Neisseria meningitidis iron-regulated RTX proteins FrpA and FrpC, and to a much lesser extent with other RTX proteins. The apxIVA gene could be detected in all A. pleuropneumoniae serotypes and seems to be species-specific. Although the precise role of this new RTX determinant in pathogenesis of porcine pleuropneumonia needs to be determined, apxIVA is the first in vivo induced toxin gene that has been described in A. pleuropneumoniae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avibacterium paragallinarum, the etiological agent of infectious coryza in chicken, was found to encode a bivalent serine-protease - RTX-porin toxin named AvxA. This toxin is encoded on a classical RTX operon structure with the activator gene avxC, the structural serin-protease-RTX toxin gene avxA, and the genes for a proper type I secretion system avxBD. AvxA is activated by the product of the avxC gene, secreted by the avxBD specified type I secretion system and proteolytically processed leaving a 95 kDa RTX moiety that is found in culture supernatants of A. paragallinarum serovars A, B and C. The RTX moiety of AvxA (AvxA-RTX) is cytotoxic against the avian macrophage like cell line HD11 but not against bovine macrophage cell line BoMac. Purified IgG from hyper-immune rabbit anti-AvxA-RTX serum made by immunization with recombinant AvxA-RTX from a serotype A strain fully neutralizes the cytotoxic activity of recombinant active AvxA-RTX and of A. paragallinarum serotypes A, B and C. This indicates that AvxA is a common major virulence attribute of all A. paragallinarum serotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND In 2006, bluetongue virus serotype 8 (BTV-8) was detected for the first time in central Europe. Measures to control the infection in livestock were implemented in Switzerland but the question was raised whether free-ranging wildlife could be a maintenance host for BTV-8. Furthermore Toggenburg orbivirus (TOV), considered as a potential 25th BTV serotype, was detected in 2007 in domestic goats in Switzerland and wild ruminants were considered a potential source of infection. To assess prevalences of BTV-8 and TOV infections in wildlife, we conducted a serological and virological survey in red deer, roe deer, Alpine chamois and Alpine ibex between 2009 and 2011. Because samples originating from wildlife carcasses are often of poor quality, we also documented the influence of hemolysis on test results, and evaluated the usefulness of confirmatory tests. RESULTS Ten out of 1,898 animals (0.5%, 95% confidence interval 0.3-1.0%) had detectable antibodies against BTV-8 and BTV-8 RNA was found in two chamois and one roe deer (0.3%, 0.1-0.8%). Seroprevalence was highest among red deer, and the majority of positive wild animals were sampled close to areas where outbreaks had been reported in livestock. Most samples were hemolytic and the range of the optical density percentage values obtained in the screening test increased with increasing hemolysis. Confirmatory tests significantly increased specificity of the testing procedure and proved to be applicable even on poor quality samples. Nearly all samples confirmed as positive had an optical density percentage value greater than 50% in the ELISA screening. CONCLUSIONS Prevalence of BTV-8 infection was low, and none of the tested animals were positive for TOV. Currently, wild ruminants are apparently not a reservoir for these viruses in Switzerland. However, we report for the first time BTV-8 RNA in Alpine chamois. This animal was found at high altitude and far from a domestic outbreak, which suggests that the virus could spread into/through the Alps. Regarding testing procedures, hemolysis did not significantly affect test results but confirmatory tests proved to be necessary to obtain reliable prevalence estimates. The cut-off value recommended by the manufacturer for the screening test was applicable for wildlife samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The hippocampus undergoes apoptosis in experimental pneumococcal meningitis leading to neurofunctional deficits in learning and memory function. The aim of the present study was 1) to investigate hippocampal apparent diffusion coefficient (ADC) and volume with MRI during the course of experimental pneumococcal meningitis, 2) to explore the influence of accompanying bacteremia on hippocampal water distribution and volume, 3) and to correlate these findings to the extent of apoptosis in the hippocampus. METHODS Experimental meningitis in rats was induced by intracisternal injection of live pneumococci. The study comprised of four experimental groups. I. Uninfected controls (n = 8); II. Meningitis (n = 11); III. Meningitis with early onset bacteremia by additional i.v. injection of live pneumococci (n = 10); IV. Meningitis with attenuated bacteremia by treatment with serotype-specific anti-pneumococcal antibodies (n = 14). T2 and diffusion weighted MR images were used to analyze changes in hippocampus volume and water diffusion (ADC). The results were correlated to ADC of the cortex, to ventricular volume, and to the extent of hippocampal apoptosis. RESULTS Both ADC and the volume of hippocampus were significantly increased in meningitis rats compared to uninfected controls (Kruskal-Wallis test, p = 0.0001, Dunns Post Test, p < 0.05), and were significantly increased in meningitis rats with an early onset bacteremia as compared to meningitis rats with attenuated bacteremia (p < 0.05). Hippocampal ADC and the volume and size of brain ventricles were positively correlated (Spearman Rank, p < 0.05), whereas no association was found between ADC or volume and the extent of apoptosis (p > 0.05). CONCLUSIONS In experimental meningitis increase in volume and water diffusion of the hippocampus are significantly associated with accompanying bacteremia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Group B Streptococcus (GBS) causes invasive infections in neonates, older adults and patients with comorbidities. β-hemolysin/cytolysin is an important GBS virulence factor. It is encoded by the cyl operon and confers GBS hemolytic activity. Isolates displaying hyperpigmentation are typically hyperhemolytic. Comparison of clonally identical isolates displaying different levels of pigmentation has shown transcriptional dysregulation due to mutations in components of the control of the virulence S/R (CovS/R) regulatory system. In addition, hyperpigmented isolates show decreased CAMP factor and decreased capsule thickness. In analogy to findings in group A Streptococcus, a pivotal role of CovS/R has been proposed in the host-pathogen interaction of invasive GBS infection. However, corresponding investigations on multiple clinical GBS isolates have not been performed. We prospectively collected hyperpigmented isolates found in a diagnostic laboratory and performed phenotypic, molecular and transcriptional analyses. In the period from 2008 to 2012, we found 10 isolates obtained from 10 patients. The isolates reflected both invasive pathogens and colonizers. In three cases, clonally identical but phenotypically different variants were also found. Hence, the analyses included 13 isolates. No capsular serotype was found to be significantly more frequent. Bacterial pigments were analyzed via spectrophotometry and for their hemolytic activity. Data obtained for typical absorbance spectra peaks correlated significantly with hemolytic activity. Molecular analysis of the cyl operon showed that it was conserved in all isolates. The covR sequence displayed mutations in five isolates; in one isolate, the CovR binding site to cylX was abrogated. Our results on clinical isolates support previous findings on CovR-deficient isogenic mutants, but suggest that - at least in some clinical isolates - for β-hemolysin/cytolysin and CAMP factor production, other molecular pathways may be involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chapter 1 gives an overview about Streptococcus pneumoniae, its role as a human pathogen and its virulence factors. Additionally, biofilm development and its relevance in clinics are introduced, and the innate immune response to pneumococcus as well as bacterial-viral interactions in the upper respiratory tract are also discussed. Chapter 2 emphasizes the three main topics of this thesis: the role of capsule and pneumolysin in the immune response in the respiratory tract, biofilm formation of S. pneumoniae serotypes and commensal streptococci in vitro, and host innate immune responses to RSV and S. pneumoniae during in vitro co-infections. Aims and hypotheses are provided here. Chapter 3 is divided into two parts: First, the release of the pro-inflammatory cytokines CXCL8 and IL-6 from the human pharyngeal epithelial cell line Detroit 562 and from human bronchial epithelial cells (iHBEC) is described in response to S. pneumoniae. Capsule was shown to suppress the release of both cytokines in both cell lines tested, but release was much less from iHBEC cells. During intranasal colonization of mice, suppression of CXCL8 release by the capsule was also observed in vivo, but the effect was only measured in the absence of pneumolysin. Long term, stable nasopharyngeal carriage in a mouse model resulted in the dissemination of nonencapsulated pneumococci into the lungs, whereas encapsulated strains remained in the nasopharynx. The S. pneumoniae capsule thus plays a role in modulation of the pro-inflammatory immune response in the respiratory tract. Second, results on immunological cells and immune regulation in a long term, stable nasopharyngeal carriage mouse model are presented. Mice were infected with encapsulated or nonencapsulated pneumococcal strains, and after 1, 3, 8 and 15 days, were sacrificed to evaluate the numbers of CD45+ cells, neutrophils, macrophages, FoxP3+ regulatory T-cells and CD3+ T-cells in the nasal mucosa as well as the amount of secreted IL-10 in the nasopharynx. Nasopharyngeal colonization which is effectively silent resulted in the stimulation of FoxP3+ regulatory T-cells and IL-10 release associated with immune homeostasis, whereas lung infiltration was required to increase the number of neutrophils and macrophages resulting in a stronger innate immune response in the nasal mucosa. Chapter 4 contains results of mono- and co-stimulation using RSV and pneumococci or pneumococcal virulence factors on the human bronchial epithelial cell line BEAS-2B. An increase in CXCL8 and IL-6 levels was measured for mixed stimulations of RSV and pneumococcus when encapsulated bacteria were used. Increasing pneumolysin concentrations resulted in enhanced CXCL8 levels. Priming of bronchial epithelial cells with RSV opens the door for more severe pneumococcal infections. Chapter 5 is composed of two parts: The first part describes initial biofilm formation of serotypes 6B and 7F in a static model in vitro. Biofilms of both serotypes contained SCVs, but only serotype 6B increased in SCV formation between 16 and 65h of incubation. SCV stability was tested by passaging clones in complex medium, where SCV production is not associated with advantages in growth. Serotype 6B lost the SCV phenotype indicating a fast adaptation to a changing nutritional environment. Limitations of our in vitro model are discussed. The second part is about initial biofilm formation of mixed culture growth of S. pneumoniae with commensal streptococci. Competition dominates this process. S. oralis and pneumococcus compete for nutrients, whereas mixed species growth of S. mitis or S. pseudopneumoniae with S. pneumoniae is mainly influenced by other factors. In Chapter 6 the findings of chapters 3, 4 and 5 are discussed and an outlook for further studies is provided. Chapters 7, 8, 9, 10 and 11 contain the references, the acknowledgements, the curriculum vitae, the appendix and the declaration of originality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bluetongue virus (BTV) is an economically important member of the genus Orbivirus and closely related to African horse sickness virus (AHSV) and Epizootic hemorrhagic disease virus (EHDV). Currently, 26 different serotypes of BTV are known. The virus is transmitted by blood-feeding Culicoides midges and causes disease (bluetongue [BT]) in ruminants. In 2006/2007, BTV serotype 8 (BTV-8) caused widespread outbreaks of BT amongst livestock in Europe, which were eventually controlled employing a conventionally inactivated BTV vaccine. However, this vaccine did not allow the discrimination of infected from vaccinated animals (DIVA) by the commonly used VP7 cELISA. RNA replicon vectors based on propagation-incompetent recombinant vesicular stomatitis virus (VSV) represent a novel vaccine platform that combines the efficacy of live attenuated vaccines with the safety of inactivated vaccines. Our goal was to generate an RNA replicon vaccine for BTV-8, which is safe, efficacious, adaptable to emerging orbivirus infections , and compliant with the DIVA principle. The VP2, VP5, VP3 and VP7 genes encoding the BTV-8 capsid proteins, as well as the non-structural proteins NS1 and NS3 were inserted into a VSV vector genome lacking the essential VSV glycoprotein (G) gene. Infectious virus replicon particles (VRP) were produced on a transgenic helper cell line providing the VSV G protein in trans. Expression of antigens in vitro was analysed by immunofluorescence using monoclonal and polyclonal antibodies. In a pilot study, sheep were immunized with two different VRP-based vaccine candidates, one comprising the BTV-8 antigens VP2, VP5, VP3, VP7, NS1, and NS3, the other one containing antigens VP3, VP7, NS1, and NS3. Control animals received VRPs containing an irrelevant antigen. Virus neutralizing antibodies and protection after BTV-8 challenge were evaluated and compared to animals immunized with the conventionally inactivated vaccine. Full protection was induced only when the two antigens VP2 and VP5 were included in the vaccine. To further evaluate if VP2 alone, a combination of VP2 and VP5 or VP5 alone were necessary for complete protection, we performed a second animal trial. Interestingly, VP2 as well as the combination of VP2 and VP5 but not VP5 alone conferred full protection in terms of neutralizing antibodies, and protection from clinical signs and viremia after BTV-8 challenge. These results show that the VSV replicon system represents a safe, efficacious and DIVA-compliant vaccine against BTV as well as a possible platform for protection against other Orbiviruses, such as AHSV and EHDV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BackgroundThe polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur.ResultsHere, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater.ConclusionsWe identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the epidemiology of pneumococcal co-colonization is important for monitoring vaccine effectiveness and the occurrence of horizontal gene transfer between pneumococcal strains. In this study we aimed to evaluate the impact of the seven-valent pneumococcal conjugate vaccine (PCV7) on pneumococcal co-colonization among Portuguese children. Nasopharyngeal samples from children up to 6 years old yielding a pneumococcal culture were clustered into three groups: pre-vaccine era (n = 173), unvaccinated children of the vaccine era (n = 169), and fully vaccinated children (4 doses; n = 150). Co-colonization, serotype identification, and relative serotype abundance were detected by analysis of DNA of the total bacterial growth of the primary culture plate using the plyNCR-RFLP method and a molecular serotyping microarray-based strategy. The plyNCR-RFLP method detected an overall co-colonization rate of 20.1%. Microarray analysis confirmed the plyNCR-RFLP results. Vaccination status was the only factor found to be significantly associated with co-colonization: co-colonization rates were significantly lower (p = 0.004; Fisher's exact test) among fully vaccinated children (8.0%) than among children from the pre-PCV7 era (17.3%) or unvaccinated children of the PCV7 era (18.3%). In the PCV7 era there were significantly less non-vaccine type (NVT) co-colonization events than would be expected based on the NVT distribution observed in the pre-PCV7 era (p = 0.024). In conclusion, vaccination with PCV7 resulted in a lower co-colonization rate due to an asymmetric distribution between NVTs found in single and co-colonized samples. We propose that some NVTs prevalent in the PCV7 era are more competitive than others, hampering their co-existence in the same niche. This result may have important implications since a decrease in co-colonization events is expected to translate in decreased opportunities for horizontal gene transfer, hindering pneumococcal evolution events such as acquisition of antibiotic resistance determinants or capsular switch. This might represent a novel potential benefit of conjugate vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Riemerella anatipestifer, the causative agent of septicemia anserum exsudativa (also called new duckling disease), belongs to the family Flavobacteriaceae of gram-negative bacteria. We determined the DNA sequences of the rrs genes encoding the 16S rRNAs of four R. anatipestifer strains by directly sequencing PCR-amplified rrs genes. A sequence similarity analysis confirmed the phylogenetic position of R. anatipestifer in the family Flavobacteriaceae in rRNA superfamily V and allowed fine mapping of R. anatipestifer on a separate rRNA branch comprising the most closely related species, Bergeyella zoohelcum, as well as Chryseobacterium balustinum, Chryseobacterium indologenes, and Chryseobacterium gleum. The sequences of the rrs genes of the four R. anatipestifer strains varied between 0.5 and 1.0%, but all of the strains occupied the same position on the phylogenetic tree. In general, differences in rrs genes were observed among R. anatipestifer strains, even within a given serotype, as shown by restriction fragment length polymorphism of PCR-amplified rrs genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 14-kDa outer membrane protein (OMP) was purified from Actinobacillus pleuro-pneumoniae serotype 2. The protein strongly reacts with sera from pigs experimentally or naturally infected with any of the 12 serotypes of A. pleuropneumoniae. The gene encoding this protein was isolated from a gene library of A. pleuropneumoniae serotype 2 reference strain by immunoscreening. Expression of the cloned gene in Escherichia coli revealed that the protein is also located in the outer membrane fraction of the recombinant host. DNA sequence analysis of the gene reveals high similarity of the protein's amino acid sequence to that of the E. coli peptidoglycan-associated lipoprotein PAL, to the Haemophilus influenzae OMP P6 and to related proteins of several other Gram-negative bacteria. We have therefore named the 14-kDa protein PalA, and its corresponding gene, palA. The 20 amino-terminal amino acid residues of PalA constitute a signal sequence characteristic of membrane lipoproteins of prokaryotes with a recognition site for the signal sequence peptidase II and a sorting signal for the final localization of the mature protein in the outer membrane. The DNA sequence upstream of palA contains an open reading frame which is highly similar to the E. coli tolB gene, indicating a gene cluster in A. pleuropneumoniae which is very similar to the E. coli tol locus. The palA gene is conserved and expressed in all A. pleuropneumoniae serotypes and in A. lignieresii. A very similar palA gene is present in A. suis and A. equuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptococcus pneumoniaebacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yersinia enterocolitica 4/O:3 is the most important human pathogenic bioserotype in Europe and the predominant pathogenic bioserotype in slaughter pigs. Although many studies on the virulence of Y. enterocolitica strains have showed a broad spectrum of detectable factors in pigs and humans, an analysis based on a strict comparative approach and serving to verify the virulence capability of porcine Y. enterocolitica as a source for human yersiniosis is lacking. Therefore, in the present study, strains of biotype (BT) 4 isolated from Swiss slaughter pig tonsils and feces and isolates from human clinical cases were compared in terms of their spectrum of virulence-associated genes (yadA, virF, ail, inv, rovA, ymoA, ystA, ystB and myfA). An analysis of the associated antimicrobial susceptibility pattern completed the characterization. All analyzed BT 4 strains showed a nearly similar pattern, comprising the known fundamental virulence-associated genes yadA, virF, ail, inv, rovA, ymoA, ystA and myfA. Only ystB was not detectable among all analyzed isolates. Importantly, neither the source of the isolates (porcine tonsils and feces, humans) nor the serotype (ST) had any influence on the gene pattern. From these findings, it can be concluded that the presence of the full complement of virulence genes necessary for human infection is common among porcine BT 4 strains. Swiss porcine BT 4 strains not only showed antimicrobial susceptibility to chloramphenicol, cefotaxime, ceftazidime, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline and trimethoprim but also showed 100% antibiotic resistance to ampicillin. The human BT 4 strains revealed comparable results. However, in addition to 100% antibiotic resistance to ampicillin, 2 strains were resistant to chloramphenicol and nalidixic acid. Additionally, 1 of these strains was resistant to sulfamethoxazole. The results demonstrated that Y. enterocolitica BT 4 isolates from porcine tonsils, as well as from feces, show the same virulence-associated gene pattern and antibiotic resistance properties as human isolates from clinical cases, consistent with the etiological role of porcine BT 4 in human yersiniosis. Thus, cross-contamination of carcasses and organs at slaughter with porcine Y. enterocolitica BT 4 strains, either from tonsils or feces, must be prevented to reduce human yersiniosis.