150 resultados para Immunity, Innate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV infection and intestinal malabsorption were very similar to those of the B cell-deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical and experimental evidence indicates that inflammatory processes contribute to the pathophysiology of epilepsy, but underlying mechanisms remain mostly unknown. Using immunohistochemistry for CD45 (common leukocyte antigen) and CD3 (T-lymphocytes), we show here microglial activation and infiltration of leukocytes in sclerotic tissue from patients with mesial temporal lobe epilepsy (TLE), as well as in a model of TLE (intrahippocampal kainic acid injection), characterized by spontaneous, nonconvulsive focal seizures. Using specific markers of lymphocytes, microglia, macrophages, and neutrophils in kainate-treated mice, we investigated with pharmacological and genetic approaches the contribution of innate and adaptive immunity to kainate-induced inflammation and neurodegeneration. Furthermore, we used EEG analysis in mutant mice lacking specific subsets of lymphocytes to explore the significance of inflammatory processes for epileptogenesis. Blood-brain barrier disruption and neurodegeneration in the kainate-lesioned hippocampus were accompanied by sustained ICAM-1 upregulation, microglial cell activation, and infiltration of CD3(+) T-cells. Moreover, macrophage infiltration was observed, selectively in the dentate gyrus where prominent granule cell dispersion was evident. Unexpectedly, depletion of peripheral macrophages by systemic clodronate liposome administration affected granule cell survival. Neurodegeneration was aggravated in kainate-lesioned mice lacking T- and B-cells (RAG1-knock-out), because of delayed invasion by Gr-1(+) neutrophils. Most strikingly, these mutant mice exhibited early onset of spontaneous recurrent seizures, suggesting a strong impact of immune-mediated responses on network excitability. Together, the concerted action of adaptive and innate immunity triggered locally by intrahippocampal kainate injection contributes seizure-suppressant and neuroprotective effects, shedding new light on neuroimmune interactions in temporal lobe epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1β production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8-/- IL-1RI-/- double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognise pathogen-associated molecular patterns (PAMPs) and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a nonredundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the cross-road between innate immunity, inflammation, and female fertility. Here, we review the studies on PTX3, with emphasis on pathogen recognition and cross-talk with other components of the innate immune system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pentraxins are a family of evolutionarily conserved multifunctional pattern-recognition proteins characterized by a cyclic multimeric structure. Based on the primary structure of the subunit, the pentraxins are divided into two groups: short pentraxins and long pentraxins. C-reactive protein (CRP) and serum amyloid P-component (SAP) are the two short pentraxins. The prototype protein of the long pentraxin group is pentraxin 3 (PTX3). CRP and SAP are produced primarily in the liver in response to IL-6, while PTX3 is produced by a variety of tissues and cells and in particular by innate immunity cells in response to proinflammatory signals and Toll-like receptor (TLR) engagement. PTX3 interacts with several ligands, including growth factors, extracellular matrix components and selected pathogens, playing a role in complement activation and facilitating pathogen recognition by phagocytes, acting as a predecessor of antibodies. In addition, PTX3 is essential in female fertility by acting as a nodal point for the assembly of the cumulus oophorus hyaluronan-rich extracellular matrix. Here we will concisely review the general properties of PTX3 in the context of the pentraxin superfamily and discuss recent data suggesting that PTX3 plays a cardiovascular protective effect. PTX3 may represent a new marker in vascular pathology which correlates with the risk of developing vascular events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the impact of a nurse program for hepatitis B virus vaccination in a center from the Swiss HIV Cohort Study. Immunity (anti-HBs >10 IU/mL) increased from 32% to 76% in the intervention center (n = 238) where vaccine management was endorsed by nurses, but only from 33% to 39% in control centers (n = 2712, P < 0.001) where management remained in charge of physicians. Immunity against HBV in the HIV population is insufficient in Switzerland. Specific nurse vaccination program may efficiently improve health care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asthma is a disease in which both genetic and environmental factors play important roles. The farming environment has consistently been associated with protection from childhood asthma and atopy, and interactions have been reported with polymorphisms in innate immunity genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll-like receptors recognize pathogen-associated molecular patterns of microbial origin, and ligand recognition results in the production of different immune mediators such as pro-inflammatory cytokines, interferon, reactive oxygen and nitrogen intermediates, and upregulation of costimmulatory molecules. As these receptors have a critical role in linking pathogen recognition to induction of inflammation and innate as well as adaptive immunity, there is tremendous interest in understanding how the tissue and cell-type expression of TLRs is regulated and its influence on the local innate immune response. While TLRs are well studied in humans and rodents, to date little is known about them in dogs. The purpose of this study was to develop canine specific antibodies against TLR2, 4, 5 and 9 that were used to measure relative expression of these TLRs in healthy and reactive canine mesenteric lymph nodes. All 8 rabbit sera (2 each for TLR2, 4, 5 and 9) were strongly positive in ELISA against the respective 2 peptides per TLR used for immunization. The purified antibodies selected specifically detected a protein band with an apparent size of approximately 70 kDa in lysates of canine PBMCs by Western blotting. Immunostaining was observed with purified antibodies against TLR4, 5 and 9, whereas for canine TLR2, staining was only observed with the unpurified antibodies. In the mesenteric lymph node of healthy dogs, the overall staining pattern was very similar for TLR4 and 5 with positive cells predominantly found in the internodular areas and lower part of the cortex. Compared to the TLR4 and 5, more cells stained positive for TLR9 especially in the lymphoid nodules. The reactive lymph nodes contained more TLR4 and 9 positive cells. Moreover, a shift of TLR-9 positive cells from the lymphoid follicles to the deep cortex and medullary cords was observed. Whereas TLR9 co-localized with CD79-positive areas, TLR4 and 5 antibodies stained cells primarily in the CD3-positive areas. All three TLR antibodies stained cells within the area that co-localized with lysozyme-positive cells. In conclusion, this study demonstrates that the antibodies generated against canine TLR 4, 5 and 9 identify the expression of these TLRs in formalin-fixed canine lymph nodes and demonstrate increased expression in reactive canine mesenteric lymph nodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental changes affecting the relationship between the developing immune system and microbial exposure have been implicated in the epidemic rise of allergic disease in developed countries. While early developmental differences in T cell function are well-recognised, there is now emerging evidence that this is related to developmental differences in innate immune function. In this study we sought to examine if differences associated with innate immunity contribute to the altered immune programming recognised in allergic children. Here, we describe for the first time, the association of carriage of the T allele of the tagging single nucleotide polymorphism rs12979860 3 kb upstream of IL28B, encoding the potent innate immune modulator type III interferon lambda (IFN-λ3), and allergy in children (p = 0.004; OR 4.56). Strikingly, the association between rs12979860 genotype and allergic disease is enhanced in girls. Furthermore, carriage of the T allele at rs12979860 correlates with differences in the pro-inflammatory profile during the first five years of life suggesting this contributes to the key differences in subsequent innate immune development in children who develop allergic disease. In the context of rising rates of disease, these immunologic differences already present at birth imply very early interaction between genetic predisposition and prenatal environmental influences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical and epidemiological studies show a close association between obesity and the risk of asthma development. The underlying cause-effect relationship between metabolism, innate and adaptive immunity, and inflammation remains to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized pustular psoriasis (GPP) is a severe inflammatory disease characterized by recurrent eruptions of sterile pustules on erythematous skin. Although tumor necrosis factor (TNF) antagonists may lead to a rapid resolution of GPP, the mechanism of action of these agents remains to be investigated. Here, we sought to evaluate markers of immune response in the skin of a patient who experienced a rapid amelioration of GPP after treatment with infliximab and acitretin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunoglobulin A (IgA) is the main secretory immunoglobulin of mucous membranes and is powerfully induced by the presence of commensal microbes in the intestine. B cells undergo class switch recombination to IgA in the mucosa-associated lymphoid tissues, particularly mesenteric lymph nodes (MLNs) and Peyer's patches, through both T-dependent and T-independent pathways. IgA B cells primed in the mucosa traffic from the intestinal lymphoid structures, initially through the lymphatics and then join the bloodstream, to home back to the intestinal mucosa as IgA-secreting plasma cells. Once induced, anti-bacterial IgA can be extremely long-lived but is replaced if there is induction of additional IgA specificities by other microbes. The mucosal immune system is anatomically separated from the systemic immune system by the MLNs, which act as a firewall to prevent penetration of live intestinal bacteria to systemic sites. Dendritic cells sample intestinal bacteria and induce B cells to switch to IgA. In contrast, intestinal macrophages are adept at killing extracellular bacteria and are able to clear bacteria that have crossed the mucus and epithelial barriers. There is both a continuum between innate and adaptive immune mechanisms and compartmentalization of the mucosal immune system from systemic immunity that function to preserve host microbial mutualism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agrin, an extracellular matrix protein belonging to the heterogeneous family of heparan sulfate proteoglycans (HSPGs), is expressed by cells of the hematopoietic system but its role in leukocyte biology is not yet clear. Here we demonstrate that agrin has a crucial, nonredundant role in myeloid cell development and functions. We have identified lineage-specific alterations that affect maturation, survival and properties of agrin-deficient monocytic cells, and occur at stages later than stem cell precursors. Our data indicate that the cell-autonomous signals delivered by agrin are sensed by macrophages through the α-DC (DG) receptor and lead to the activation of signaling pathways resulting in rearrangements of the actin cytoskeleton during the phagocytic synapse formation and phosphorylation of extracellular signal-regulated kinases (Erk 1/2). Altogether, these data identify agrin as a novel player of innate immunity.