78 resultados para cell interaction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the context of drug hypersensitivity, our group has recently proposed a new model based on the structural features of drugs (pharmacological interaction with immune receptors; p-i concept) to explain their recognition by T cells. According to this concept, even chemically inert drugs can stimulate T cells because certain drugs interact in a direct way with T-cell receptors (TCR) and possibly major histocompatibility complex molecules without the need for metabolism and covalent binding to a carrier. In this study, we investigated whether mouse T-cell hybridomas transfected with drug-specific human TCR can be used as an alternative to drug-specific T-cell clones (TCC). Indeed, they behaved like TCC and, in accordance with the p-i concept, the TCR recognize their specific drugs in a direct, processing-independent, and dose-dependent way. The presence of antigen-presenting cells was a prerequisite for interleukin-2 production by the TCR-transfected cells. The analysis of cross-reactivity confirmed the fine specificity of the TCR and also showed that TCR transfectants might provide a tool to evaluate the potential of new drugs to cause hypersensitivity due to cross-reactivity. Recombining the alpha- and beta-chains of sulfanilamide- and quinolone-specific TCR abrogated drug reactivity, suggesting that both original alpha- and beta-chains were involved in drug binding. The TCR-transfected hybridoma system showed that the recognition of two important classes of drugs (sulfanilamides and quinolones) by TCR occurred according to the p-i concept and provides an interesting tool to study drug-TCR interactions and their biological consequences and to evaluate the cross-reactivity potential of new drugs of the same class.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hematopoietic cells uniquely express G(alpha16), a G protein alpha-subunit of the G(q)-type. G(alpha16) is obligatory for P2Y2 receptor-dependent Ca2+-mobilization in human erythroleukemia cells and induces hematopoietic cell differentiation. We tested whether P2Y2 receptors physically interact with G(alpha16). Receptor and G protein were fused to cyan (CFP) and yellow (YFP) variants of the green fluorescent protein (GFP), respectively. When expressed in K562 leukemia cells, the fusion proteins were capable of triggering a Ca2+-signal upon receptor stimulation, demonstrating their functional integrity. In fluorescence resonance energy transfer (FRET) measurements using confocal microscopy, a strong FRET signal from the plasma membrane region of fixed, resting cells was detected when the receptor was co-expressed with the G protein as the FRET acceptor, as well as when the CFP-tagged receptor was co-expressed with receptor fused to YFP. We conclude that, under resting conditions, G(alpha16) and P2Y2 receptors form constitutive complexes, and that the P2Y2 receptor is present as an oligomer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The postnatal development and maturation of the gastrointestinal (GI) tract of neonatal calves is crucial for their survival. Major morphological and functional changes in the calf's GI tract initiated by colostrum bioactive substances promote the establishment of intestinal digestion and absorption of food. It is generally accepted that colostrum intake provokes the maturation of organs and systems in young calves, illustrating the significance of the cow-to-calf connection at birth. These postnatal adaptive changes of the GI tissues in neonatal calves are especially induced by the action of bioactive substances such as insulin-like growth factors, hormones, or cholesterol carriers abundantly present in colostrum. These substances interact with specific cell-surface receptors or receptor-like transporters expressed in the GI wall of neonatal calves to elicit their biological effects. Therefore, the abundance and activity of cell surface receptors and receptor-like transporters binding colostral bioactive substances are a key aspect determining the effects of the cow-to-calf connection at birth. The present review compiles the information describing the effects of colostrum feeding on selected serum metabolic and endocrine traits in neonatal calves. In this context, the current paper discusses specifically the consequences of colostrum feeding on the GI expression and activity of cell-receptors and receptor-like transporters binding growth hormone, insulin-like growth factors, insulin, or cholesterol acceptors in neonatal calves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: The purpose of this study was to investigate the adhesion and invasion of periodontopathogenic bacteria in varied mixed infections and the release of interleukins from an epithelial cell line (KB cells). METHODS: KB cells were co-cultured with Porphyromonas gingivalis ATCC 33277 and M5-1-2, Tannerella forsythia ATCC 43037, Treponema denticola ATCC 35405 and Fusobacterium nucleatum ATCC 25586 in single and mixed infections. The numbers of adherent and internalized bacteria were determined up to 18 h after bacterial exposure. Additionally, the mRNA expression and concentrations of released interleukin (IL)-6 and IL-8 were measured. RESULTS: All periodontopathogenic bacteria adhered and internalized in different numbers to KB cells, but individually without any evidence of co-aggregation also to F. nucleatum. High levels of epithelial mRNA of IL-6 and IL-8 were detectable after all bacterial challenges. After the mixed infection of P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586 the highest levels of released interleukins were found. No IL-6 and IL-8 were detectable after the mixed infection of P. gingivalis M5-1-2 and F. nucleatum ATCC 25586 and the fourfold infection of P. gingivalis ATCC 33277, T. denticola ATCC 35405, T. forsythia ATCC 43037 and F. nucleatum ATCC 25586. CONCLUSION: Anaerobic periodontopathogenic bacteria promote the release of IL-6 and IL-8 by epithelial cells. Despite a continuous epithelial expression of IL-8 mRNA by all bacterial infections these effects are temporary because of the time-dependent degradation of cytokines by bacterial proteases. Mixed infections have a stronger virulence potential than single bacteria. Further research is necessary to evaluate the role of mixed infections and biofilms in the pathogenesis of periodontitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD34 (+) progenitor cells are a promising source of regeneration in atherosclerosis or ischemic heart disease. However, as recently published, CD34(+) progenitor cells have the potential to differentiate not only into endothelial cells but also into foam cells upon interaction with platelets. The mechanism of platelet-induced differentiation of progenitor cells into foam cells is as yet unclear. In the present study we investigated the role of scavenger receptor (SR)-A and CD36 in platelet-induced foam cell formation. Human CD34(+) progenitor cells were freshly derived from human umbilical veins and were co-incubated with platelets (2 x 10(8)/mL) up to 14 days resulting in large lipid-laden foam cells. Developing macrophages expressed SR-A, CD36, and Lox-1 as measured by fluorescent-activated cell sorting analysis. The presence of a blocking anti-CD36 or anti-SR-A antibody nearly abrogated foam cell formation, whereas anti-Lox-1 did not affect foam cell formation. Consistently blocking either anti-CD36 or anti-SR-A antibody significantly reduced the phagocytosis of lipid-laden platelets by macrophages. We conclude that CD36 and SR-A play an important role in platelet-induced foam cell formation from CD34(+) progenitor cells and thus represent a promising target to inhibit platelet-induced foam cell formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A triple cell co-culture model was recently established by the authors, consisting of either A549 or 16HBE14o- epithelial cells, human blood monocyte-derived macrophages and dendritic cells, which offers the possibility to study the interaction of xenobiotics with those cells. The 16HBE14o- containing co-culture model mimics the airway epithelial barrier, whereas the A549 co-cultures mimic the alveolar type II-like epithelial barrier. The goal of the present work was to establish a new triple cell co-culture model composed of primary alveolar type I-like cells isolated from human lung biopsies (hAEpC) representing a more realistic alveolar epithelial barrier wall, since type I epithelial cells cover >93% of the alveolar surface. Monocultures of A549 and 16HBE14o- were morphologically and functionally compared with the hAEpC using laser scanning microscopy, as well as transmission electron microscopy, and by determining the epithelial integrity. The triple cell co-cultures were characterized using the same methods. It could be shown that the epithelial integrity of hAEpC (mean ± SD, 1180 ± 188 Ω cm(2)) was higher than in A549 (172 ± 59 Ω cm(2)) but similar to 16HBE14o- cells (1469 ± 156 Ω cm(2)). The triple cell co-culture model with hAEpC (1113 ± 30 Ω cm(2)) showed the highest integrity compared to the ones with A549 (93 ± 14 Ω cm(2)) and 16HBE14o- (558 ± 267 Ω cm(2)). The tight junction protein zonula occludens-1 in hAEpC and 16HBE14o- were more regularly expressed but not in A549. The epithelial alveolar model with hAEpC combined with two immune cells (i.e. macrophages and dendritic cells) will offer a novel and more realistic cell co-culture system to study possible cell interactions of inhaled xenobiotics and their toxic potential on the human alveolar type I epithelial wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian teeth are composed of hydroxyapatite crystals that are embedded in a rich extracellular matrix. This matrix is produced by only two cell types, the mesenchymal odontoblasts and the ectodermal ameloblasts. Ameloblasts secrete the enamel proteins amelogenin, ameloblastin, enamelin and amelotin. Odontoblasts secrete collagen type I and several calcium-binding phosphoproteins including dentin sialophosphoprotein, dentin matrix protein, bone sialoprotein and osteopontin. The latter four proteins have recently been grouped in the family of the SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) because they display similar gene structures and because they contain an RGD tripeptide sequence that binds to integrin receptors and thus mediates cell adhesion. We have prepared all the other tooth-specific proteins in recombinant form and examined whether they might also promote cell adhesion similar to the SIBLINGs. We found that only ameloblastin consistently mediated adhesion of osteoblastic and fibroblastic cells to plastic or titanium surfaces. The activity was dependent on the intact three-dimensional structure of ameloblastin and required de novo protein synthesis of the adhering cells. By deletion analysis and in vitro mutagenesis, the active site could be narrowed down to a sequence of 13 amino acid residues (VPIMDFADPQFPT) derived from exon 7 of the rat ameloblastin gene or exons 7-9 of the human gene. Kinetic studies and RNA interference experiments further demonstrated that this sequence does not directly bind to a cell surface receptor but that it interacts with cellular fibronectin, which in turn binds to integrin receptors. The identification of a fibronectin-binding domain in ameloblastin might permit interesting applications for dental implantology. Implants could be coated with peptides containing the active sequence, which in turn would recruit fibronectin from the patient's blood. The recruited fibronectin should then promote cell adhesion on the implant surface, thereby accelerating osseointegration of the implant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During development and regeneration of the mammalian nervous system, directional signals guide differentiating neurons toward their targets. Soluble neurotrophic molecules encode for preferential direction over long distances while the local topography is read by cells in a process requiring the establishment of focal adhesions. The mutual interaction between overlapping molecular and topographical signals introduces an additional level of control to this picture. The role of the substrate topography was demonstrated exploiting nanotechnologies to generate biomimetic scaffolds that control both the polarity of differentiating neurons and the alignment of their neurites. Here PC12 cells contacting nanogratings made of copolymer 2-norbornene ethylene (COC), were alternatively stimulated with Nerve Growth Factor, Forskolin, and 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic (8CPT-2Me-cAMP) or with a combination of them. Topographical guidance was differently modulated by the alternative stimulation protocols tested. Forskolin stimulation reduced the efficiency of neurite alignment to the nanogratings. This effect was linked to the inhibition of focal adhesion maturation. Modulation of neurite alignment and focal adhesion maturation upon Forskolin stimulation depended on the activation of the MEK/ERK signaling but were PkA independent. Altogether, our results demonstrate that topographical guidance in PC12 cells is modulated by the activation of alternative neuronal differentiation pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytoplasmic dynein in filamentous fungi accumulates at microtubule plus-ends near the hyphal tip, which is important for minus-end-directed transport of early endosomes. It was hypothesized that dynein is switched on at the plus-end by cargo association. Here, we show in Aspergillus nidulans that kinesin-1-dependent plus-end localization is not a prerequisite for dynein ATPase activation. First, the Walker A and Walker B mutations in the dynein heavy chain AAA1 domain implicated in blocking different steps of the ATPase cycle cause different effects on dynein localization to microtubules, arguing against the suggestion that ATPase is inactive before arriving at the plus-end. Second, dynein from kinA (kinesin 1) mutant cells has normal ATPase activity despite the absence of dynein plus-end accumulation. In kinA hyphae, dynein localizes along microtubules and does not colocalize with abnormally accumulated early endosomes at the hyphal tip. This is in contrast to the colocalization of dynein and early endosomes in the absence of NUDF/LIS1. However, the Walker B mutation allows dynein to colocalize with the hyphal-tip-accumulated early endosomes in the kinA background. We suggest that the normal ability of dyenin to interact with microtubules as an active minus-end-directed motor demands kinesin-1-mediated plus-end accumulation for effective interactions with early endosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproductive failure, determined as recurrent spontaneous abortions (RSA) or recurrent implantation failure (RIF) in women is not well understood. Several factors, including embryo quality, and cellular and molecular changes in endometrium may contribute to the insufficient feto-maternal interaction resulting in reproductive failure. Prior clinical studies suggest an inadequate endometrial growth and development of the endometrium, leading to a lesser endometrial thickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inflammatory response is a critical component of ischemic stroke. In addition to its physiological role, the mechanisms behind transendothelial recruitment of immune cells also offer a unique therapeutic opportunity for translational stem cell therapies. Recent reports have demonstrated homing of neural stem cells (NSC) into the injured brain areas after intravascular delivery. However, the mechanisms underlying the process of transendothelial recruitment remain largely unknown. Here we describe the critical role of the chemokine CCL2 and its receptor CCR2 in targeted homing of NSC after ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FGFRL1 is a member of the fibroblast growth factor receptor family. It plays an essential role during branching morphogenesis of the metanephric kidneys, as mice with a targeted deletion of the Fgfrl1 gene show severe kidney dysplasia. Here we used the yeast two-hybrid system to demonstrate that FGFRL1 binds with its C-terminal, histidine-rich domain to Spred1 and to other proteins of the Sprouty/Spred family. Members of this family are known to act as negative regulators of the Ras/Raf/Erk signaling pathway. Truncation experiments further showed that FGFRL1 interacts with the SPR domain of Spred1, a domain that is shared by all members of the Sprouty/Spred family. The interaction could be verified by coprecipitation of the interaction partners from solution and by codistribution at the cell membrane of COS1 and HEK293 cells. Interestingly, Spred1 increased the retention time of FGFRL1 at the plasma membrane where the receptor might interact with ligands. FGFRL1 and members of the Sprouty/Spred family belong to the FGF synexpression group, which also includes FGF3, FGF8, Sef and Isthmin. It is conceivable that FGFRL1, Sef and some Sprouty/Spred proteins work in concert to control growth factor signaling during branching morphogenesis of the kidneys and other organs.