3 resultados para erythrocyte adhesiveness

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNAi (RNA interference) is a powerful technology for sequence-specific targeting of mRNAs. This thesis was aimed at establishing conditions for conditional RNAi-mediated silencing first in vitro and subsequently also in transgenic mice. As a target the basic helix-loop-helix transcription factor encoding gene SCL (stem cell leukaemia also known as Tal-1 or TCL5) was used. SCL is a key regulator for haematopoietic development and ectopic expression of SCL is correlated with acute T-lymphoblastic leukaemias. Loss of SCL function studies demonstrated that ab initio deletion of SCL resulted in embryonic lethality around day E9 in gestation. To be able to conditionally inactivate SCL, RNAi technology was combined with the tetracycline-dependent regulatory system. This strategy allowed to exogenously control the induction of RNAi in a reversible fashion and consequently the generation of a completely switchable RNAi knockdown. First a suitable vector allowing for co-expression of tetracycline-controlled shRNAs (small hairpin RNAs) and constitutively active EGFP (enhanced green fluorescent protein) was generated. This novel vector, pRNAi-EGFP, was then evaluated for EGFP expression and tetracycline-mediated expression of shRNAs. Four sequences targeting different regions within the SCL mRNA were tested for their efficiency to specifically knockdown SCL. These experiments were performed in M1 murine leukaemia cells and subsequently in the HEK 293 cell line, expressing an engineered HA-tagged SCL protein. The second assay provided a solid experimental method for determining the efficiency of different SCL-siRNA knockdown constructs in tissue culture. Western blotting analyses revealed a down regulation of SCL protein for all four tested SCL-specific target sequences albeit with different knockdown efficiencies (between 25% and 100%). Furthermore, stringent tetracycline-dependent switchability of shRNA expression was confirmed by co-transfecting the SCL-specific pRNAi-EGFP vector (SCL-siRNA) together with the HA-tagged SCL expression plasmid into the HEK 293TR /T-REx cell line constitutively expressing the tetracycline repressor (TetR). These series of experiments demonstrated tight regulation of siRNA expression without background activity. To be able to control the SCL knockdown in vivo and especially to circumvent any possible embryonic lethality a transgenic mouse line with general expression of a tetracycline repressor was needed. Two alternative methods were used to generate TetR mice. The first approach was to co-inject the tetracycline-regulated RNAi vector together with a commercially available and here specifically modified T-REx expression vector (SCL-siRNA T-REx FRT LoxP mouse line). The second method involved the generation of a TetR expressor mouse line, which was then used for donating TetR-positive oocytes for pronuclear injection of the RNAi vector (SCL-siRNA T-REx mouse line). As expected, and in agreement with data from conditional Cre-controlled adult SCL knockout mice, post-transcriptional silencing of SCL by RNAi caused a shift in the maturation of red blood cell populations. This was shown in the bone marrow and peripheral blood by FACS analysis with the red blood cell-specific TER119 and CD71 markers which can be used to define erythrocyte differentiation (Lodish plot technique). In conclusion this study established conditions for effective SCL RNAi-mediated silencing in vitro and in vivo providing an important tool for further investigations into the role of SCL and, more generally, of its in vivo function in haematopoiesis and leukaemia. Most importantly, the here acquired knowledge will now allow the establishment of other completely conditional and reversible knockdown phenotypes in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The t(8;21) (q22;q22) translocation fusing the ETO (also known as MTG8) gene on human chromosome 8 with the AML1 (also called Runx1 or CBFα) gene on chromosome 21 is one of the most common genetic aberrations found in acute myeloid leukemia (AML). This chromosomal translocation occurs in 12 % of de novo AML cases and in up to 40 % of the AML-M2 subtype of the French-American-British classification. To date, the in vivo function of aberrant AML1-ETO fusion protein expression has been investigated by several groups. However, in these studies, controversial results were reported and some key issues remain unknown. Importantly, the consequences of aberrant AML1-ETO expression for self-renewing hematopoietic stem cells (HSCs), multipotent hematopoietic progenitors (MPPs) and lineage-restricted precursors are not known. rn The aim of this thesis was to develop a novel experimental AML1-ETO in vivo model that (i) overcomes the current lack of insight into the pre-leukemic condition of t(8;21)-associated AML, (ii) clarifies the in vivo consequences of AML1-ETO for HSCs, MPPs, progenitors and more mature blood cells and (iii) generates an improved mouse model suitable for mirroring the human condition. For this purpose, a conditional tet on/off mouse model expressing the AML1-ETO fusion protein from the ROSA26 (R26) locus was generated. rn Aberrant AML1-ETO activation in compound ROSA26/tetOAML1-ETO (R26/AE) mice caused high rates of mortality, an overall disruption of hematopoietic organs and a profound alteration of hematopoiesis. However, since the generalized activity of the R26 locus did not recapitulate the leukemic condition found in human patients, it was important to restrict AML1-ETO expression to blood cell lineages. Therefore, bone marrow cells from non-induced R26/AE mice were adoptively transplanted into sublethal irradiated RAG2-/- recipient mice. First signs of phenotypical differences between AML1-ETO-expressing and control mice were observed after eight to nine months of transgene induction. AML1-ETO-expressing mice showed profound changes in hematopoietic organs accompanied by manifest extramedullary hematopoiesis. In addition, a block in early erythropoiesis, B- and T-cell maturation was observed and granulopoiesis was significantly enhanced. Most interestingly, conditional activation of AML1-ETO in chimeric mice did not increase HSCs, MPPs, common lymphoid precursors (CLPs), common myeloid progenitors (CMPs) and megakaryocyte-erythrocyte progenitors (MEPs) but promoted the selective amplification of granulocyte-macrophage progenitors (GMPs). rn The results of this thesis provide clear experimental evidence how aberrant AML1-ETO modulates the developmental properties of normal hematopoiesis and establishes for the first time that AML1-ETO does not increase HSCs, MPPs and common lineage-restricted progenitor pools but specifically amplifies GMPs. The here presented mouse model not only clarifies the role of aberrant AML1-ETO for shaping hematopoietic development but in addition has strong implications for future therapeutic strategies and will be an excellent pre-clinical tool for developing and testing new approaches to treat and eventually cure AML.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melittin, Hauptbestandteil des Bienengifts, ist ein kationisches Peptid, welches in der Lage ist, die biophysikalischen Eigenschaften der Zellmembran zu beeinflussen. Melittin werden unter anderem auch entzündungshemmende, schmerzlindernde, anti-rheumatische und anti-arthritische Wirkungen zugeschrieben. rnIn dieser Arbeit wurde nachgewiesen, dass Melittin die Proteolyse von ADAM10- und ADAM17-Substraten in verschiedenen Zellen stimuliert. Durch das Sheddingvon TGF-α wurde in HaCaT-Keratinozyten eine Transaktivierung des EGF-Rezeptors und eine daraus resultierende Phosphorylierung der Kinase ERK1/2 beobachtet. Die durch Melittin gesteigerte Aktivität der ADAMs ist calciumunabhängig und wird nicht durch Änderungen in der Membranfluidität verursacht. Eine Beteiligung der P2-Rezeptoren an der Melittin-induzierten ADAM-Aktivierung konnte sowohl durch Inhibition der Rezeptoren als auch durch Transfektion von HEK-Zellen mit dem P2X7-Rezeptor nachgewiesen werden. In diesen wurde nach der Behandlung mit Melittin eine Phosphorylierung von ERK1/2 beobachtet, welche durch ATPasen und P2-Rezeptor-Inhibitoren unterdrückt werden konnte. rnMit Hilfe des Kaninchenerythrozyten-Modells wurde nachgewiesen, dass eine Translokation von Phosphatidylserin von der Innen- zur Außenseite der Membran unmittelbar mit einer erhöhten ADAM-Aktivität korreliert. Sowohl durch Aktivierung des P2X7-Rezeptors als auch durch die Behandlung der Zellen mit dem Ionophor A23187 konnte ein Phosphatidylserin-Flip induziert werden. Dieser Flip führte zu einer erhöhten Aktivität von ADAM10, die durch eine gesteigerte Hämolyse und Spaltung von pVCC nachgewiesen werden konnte. Wurde der Phosphatidylserin-Flip durch Inhibitoren des P2X7-Rezeptors bzw. die Chelation von Ca2+ und Hemmung der Ionenfluxe unterdrückt, blieb auch die erhöhte ADAM-Aktivität aus. Wurde dagegen der Phosphatidylserin-Flip erst induziert und nachträglich die Inhibition des P2X7-Rezeptors bzw. die Chelation von Ca2+ und Hemmung der Ionenfluxe durchgeführt, zeigte dies keine Inhibition der ADAM-Aktivität.rnZusammenfassend zeigen diese Ergebnisse, dass eine Exposition von Phosphatidylserin auf der Außenseite der Membran in einem kausalen Zusammenhang mit einer gesteigerten ADAM-Aktivität steht.rn