42 resultados para Endothelial cells
Resumo:
Die Förderung der Zelladhäsion durch sogenannte biomimetische Oberflächen wird in der Medizin als vielversprechender Ansatz gesehen, um Komplikationen wie z. B. Fremdkörperreaktionen nach der Implantation entgegenzuwirken. Neben der Immobilisierung einzelner Biomoleküle wie z. B. dem RGD-Peptid, Proteinen und Wachstumsfaktoren auf verschiedenen Materialien, konzentriert man sich derzeit in der Forschung auf die Co-Immobilisierung zweier Moleküle gleichzeitig. Hierbei werden die funktionellen Gruppen z. B. von Kollagen unter Verwendung von nur einer Kopplungschemie verwendet, wodurch die Kopplungseffizienz der einzelnen Komponenten nur begrenzt kontrollierbar ist. Das Ziel der vorliegenden Arbeit war die Entwicklung eines Immobilisierungsverfahrens, welches die unabhängige Kopplung zweier Faktoren kontrolliert ermöglicht. Dabei sollten exemplarisch das adhäsionsfördernde RGD-Peptid (Arginin-Glycin-Asparaginsäure) zusammen mit dem Wachstumsfaktor VEGF (Vascular Endothelial Growth Factor) auf Titan gebunden werden. In weiteren Experimenten sollten dann die pro-adhäsiven Faktoren Fibronektin, Kollagen, Laminin und Osteopontin immobilisiert und untersucht werden. rnDie Aminofunktionalisierung von Titan durch plasma polymerisierte Allylaminschichten wurde als Grundlage für die Entwicklung des nasschemischen Co-immobilisierungsverfahren verwendet. Für eine unabhängige und getrennte Anbindung der verschiedenen Biomoleküle stand in diesem Zusammenhang die Entwicklung eines geeigneten Crosslinker Systems im Vordergrund. Die Oberflächencharakterisierung der entwickelten Oberflächen erfolgte mittels Infrarot Spektroskopie, Surface Plasmon Resonance Spektroskopie (SPR), Kontaktwinkelmessungen, Step Profiling und X-Ray Photoelectron Spektroskopie (XPS). Zur Analyse der Anbindungsprozesse in Echtzeit wurden SPR-Kinetik Messungen durchgeführt. Die biologische Funktionalität der modifizierten Oberflächen wurde in vitro an Endothelzellen (HUVECs) und Osteoblasten (HOBs) und in vivo in einem Tiermodell-System an der Tibia von Kaninchen untersucht.rnDie Ergebnisse zeigen, dass alle genannten Biomoleküle sowohl einzeln auf Titan kovalent gekoppelt als auch am Bespiel von RGD und VEGF in einem getrennten Zwei-Schritt-Verfahren co-immobilisiert werden können. Des Weiteren wurde die biologische Funktionalität der gebundenen Faktoren nachgewiesen. Im Falle der RGD modifizierten Oberflächen wurde nach 7 Tagen eine geförderte Zelladhäsion von HUVECs mit einer signifikant erhöhten Zellbesiedlungsdichte von 28,5 % (p<0,05) gezeigt, wohingegen auf reinem Titan Werte von nur 13 % beobachtet wurden. Sowohl VEGF als auch RGD/VEGF modifizierte Proben wiesen im Vergleich zu Titan schon nach 24 Stunden eine geförderte Zelladhäsion und eine signifikant erhöhte Zellbesiedlungsdichte auf. Bei einer Besiedlung von 7,4 % auf Titan, zeigten VEGF modifizierte Proben mit 32,3 % (p<0,001) eine deutlichere Wirkung auf HUVECs als RGD/VEGF modifizierte Proben mit 13,2 % (p<0,01). Die pro-adhäsiven Faktoren zeigten eine deutliche Stimulation der Zelladhäsion von HUVECs und HOBs im Vergleich zu reinem Titan. Die deutlich höchsten Besiedlungsdichten von HUVECs konnten auf Fibronektin mit 44,6 % (p<0,001) und Kollagen mit 39,9 % (p<0,001) nach 24 Stunden beobachtet werden. Laminin zeigte keine und Osteopontin nur eine sehr geringe Wirkung auf HUVECs. Bei Osteoblasten konnten signifikant erhöhte Besiedlungsdichten im Falle aller pro-adhäsiven Faktoren beobachtet werden, jedoch wurden die höchsten Werte nach 7 Tagen auf Kollagen mit 90,6 % (p<0,001) und Laminin mit 86,5 % (p<0,001) im Vergleich zu Titan mit 32,3 % beobachtet. Die Auswertung der Tierexperimente ergab, dass die VEGF modifizierten Osteosyntheseplatten, im Vergleich zu den reinen Titankontrollen, eine gesteigerte Knochenneubildung auslösten. Eine solche Wirkung konnte für RGD/VEGF modifizierte Implantate nicht beobachtet werden. rnInsgesamt konnte gezeigt werden, dass mittels plasmapolymerisierten Allylamin Schichten die genannten Biomoleküle sowohl einzeln gebunden als auch getrennt und kontrolliert co-immobilisiert werden können. Des Weiteren konnte eine biologische Funktionalität für alle Faktoren nach erfolgter Kopplung in vitro gezeigt werden. Wider Erwarten konnte jedoch kein zusätzlicher biologischer Effekt durch die Co-immobilisierung von RGD und VEGF im Vergleich zu den einzeln immobilisierten Faktoren gezeigt werden. Um zu einer klinischen Anwendung zu gelangen, ist es nun notwendig, das entwickelte Verfahren in Bezug auf die immobilisierten Mengen der verschiedenen Faktoren hin zu optimieren. rn
Resumo:
Exposition von Endothelzellen mit ionisierender Strahlung (IR) oder Behandlung mit inflammatorischen Zytokinen (z. B. TNFa) induziert über eine Rho-GTPasen abhängige NF-kB-Aktivierung die Expression verschiedener Zelladhäsionsmoleküle, u. a. auch von E-Selektin. E-Selektin vermittelt die Adhäsion von Tumorzellen (TC) an Endothelzellen und ist daher vermutlich an der Extravasation von zirkulierenden Tumorzellen beteiligt. HMG-CoA-Reduktase-Inhibitoren (Statine), welche eine breite klinische Anwendung als Lipidsenker erfahren, sind in der Lage, Rho-GTPasen und die durch sie vermittelten Signalwege zu hemmen. Daher sollten Statine wie Lovastatin auch Zell-Zell-Adhäsionsvorgänge beeinflussen. Die vorliegende Arbeit widmet sich den Mechanismen, mit denen IR und TNF in Endothel- und/oder Tumorzellen pro-adhäsive Faktoren induzieren können und ob diese Effekte durch Lovastatin beeinflussbar sind. Zu diesem Zweck wurde mittels eines ELISA-basierenden Zelladhäsions-Assays die Auswirkung von IR und TNF auf Zell-Zell-Kontakte zwischen humanen Tumorzellen (u. a. Kolonkarzinomzellen (HT29)) und humanen, venösen Nabelschnurendothelzellen (HUVEC) analysiert. Zudem wurden die Effekte einer Lovastatinvorbehandlung von TC und/oder HUVEC auf TC-HUVEC-Adhäsion untersucht. Des Weiteren wurden die Wirkungen des sLex-Mimetikums Glycyrrhizin und des Rac1-spezifischen „small-molecule“ Inhibitors NSC23766 auf TC-HUVEC-Adhäsion überprüft. Zusätzlich wurde die strahleninduzierbare mRNA-Expression von diversen Zelladhäsionsmolekülen, Metastasierungsfaktoren und DNA-Reparatur-Genen mittels qRT-PCR (Real-Time Analysen) quantitativ erfasst. Um die erhaltenen in vitro Ergebnisse auch in vivo zu bestätigen, untersuchten wir den Effekt einer Ganzkörperbestrahlung (TBI) von BALB/c-Mäusen auf die Expression von pro-adhäsiven Faktoren. Zur Analyse der Tumorzell-Extravasation wurden Tumorzellen in die laterale Schwanzvene immundefizienter Mäuse injiziert und anschließend eine Ganzkörperbestrahlung durchgeführt (4 Gy). Nach einer Wartezeit von 4 Wochen wurde ein erhöhtes Auftreten von Lungenmetastasen beobachtet, welches durch Vorbehandlung der Tiere mit Statinen, NSC23766 oder Glycyrrhizin blockiert werden konnte. Zusammenfassend konnte somit ein Einfluss von IR auf die Expression verschiedener Zelladhäsionsmoleküle in vitro und auf die Extravasation zirkulierender Tumorzellen in vivo festgestellt werden. Diese pro-metastatischen Strahleneffekte konnten durch pharmakologische Hemmung Rho-regulierter Signalwege abgeschwächt werden.
Resumo:
For the successful integration of bone tissue engineering constructs into patients, an adequate supply with oxygen and nutrients is critical. Therefore, prevascularisation of bone tissue engineering constructs is desirable for bone formation, remodelling and regeneration. Co-culture systems, consisting of human endothelial cells and primary osteoblasts (pOB) as well as osteosarcoma cell lines, represent a promising method for studying the mechanisms involved in the vascularisation of constructs in bone tissue en- gineering and could provide new insights into the molecular and cellular mechanisms that control essential processes during angiogenesis. The present study demonstrated the im- portant components of co-culture systems with a focus on bone tissue replacement and the angiogenic effects of pOB and osteosarcoma cell lines on human endothelial cells. Furthermore, the studies emphasised an overall approach for analysis of signal molecules that are involved in the angiogenic activation of human endothelial cells by the regulation of VEGF-related pathways at the transcriptional and translational levels. The osteosarcoma cell lines Cal-72, MG-63 and SaOS-2, as well as pOB from several donors, differed in their angiogenesis-inducing potential in 2-D and 3-D co-culture systems. SaOS-2 cells appeared to have a high osteogenic differentiation level with no detectable angiogenesis-inducing potential in co-culture with human endothelial cells. The angiogenic potential of the osteoblast-like cells is mainly correlated with the upregulation of essential angiogenic growth factors, such as VEGF, bFGF and HGF and the downregulation of the angiogenesis inhibitor, endostatin. However, other factors involved in angiogenic regulation were found to differ between SaOS-2 cells, compared to Cal-72 and MG-63. The present study focuses on VEGF pathway-effecting genes as key players in the regulation of angiogenesis. The levels of VEGF and VEGF-effecting genes, such as TGF-α and TIMP-2 are down-regulated in SaOS-2 cells. In contrast, direct regulators of VEGF, such as IL6, IL8 and TNF are strongly upregulated, which indicates disruptions in growth factor regulating pathways in SaOS-2 cells. Potential pathways, which could be involved include MEK, PI3K, MAPK, STAT3, AKT or ERK. Additional treatment of co-cultures with single growth factors did not accelerate or improve the angiogenesis-inducing potential of SaOS-2 cells. Knowledge of the detailed molecular mechanisms involved in angiogenesis control will hopefully allow improved approaches to be developed for prevascularisation of bone tissue engineering constructs.
Resumo:
Die primäre, produktive Cytomegalovirus (CMV)-Infektion wird im immunkompetenten Patienten effizient durch antivirale CD8+ T-Zellen kontrolliert. Das virale Genom besitzt jedoch die Fähigkeit, in einem nicht replikativen, Latenz genannten Zustand, in gewissen Zelltypen zu persistieren, ohne dass infektiöse Nachkommenviren produziert werden. Die molekularen Mechanismen, welche der Etablierung und Aufrechterhaltung der Latenz zugrundeliegen, sind noch weitestgehend unbekannt. Es gibt Hinweise darauf, dass zelluläre Verteidigungsmechanismen die Zirkularisierung und Chromatinisierung viraler Genome hervorrufen und dadurch die virale Genexpression größtenteils verhindert wird (Marks & Spector, 1984; Reeves et al., 2006).rnAllerdings liegen die Genome nicht in einem komplett inaktiven Zustand vor. Vielmehr konnte für das murine CMV (mCMV) bereits die sporadische Transkription der Gene ie1 und ie2 während der Latenz nachgewiesen werden (Kurz et al., 1999; Grzimek et al., 2001).rnIn der vorliegenden Arbeit wurde zum ersten Mal eine umfassende in vivo Latenz-Analyse zur Charakterisierung der viralen Transkription in einer Kinetik anhand der alle drei kinetischen Klassen repräsentierenden Transkripte IE1, IE3, E1, m164, M105 und M86 vorgenommen.rnNach Latenz-Etablierung, verifiziert durch Abwesenheit von infektiösem Virus, konnten alle getesteten Transkripte in der Lunge quantifiziert werden. Interessanterweise war die transkriptionelle Aktivität zu keinem Analyse-Zeitpunkt mit der klassischen IE-E-L-Kinetik der produktiven Infektion kompatibel. Stattdessen lag eine stochastische Transkript-Expression vor, deren Aktivität mit voranschreitender Zeit immer weiter abnahm.rnWährend der Latenz exprimierte Transkripte, die für antigene Peptide kodieren, können infizierte Zellen für das Immunsystem sichtbar machen, was zu einer fortwährenden Restimulation des memory T-Zell-pools führen würde. Durch zeitgleiche Analyse der Transkript-Expression, sowie der Frequenzen Epitop-spezifischer CD8+ T-Zellen während der Latenz (IE1, m164, M105), wurde eine möglicher Zusammenhang zwischen der transkriptionellen Aktivität und der Expansion des memory T-Zell-pools untersucht. Die weitere Charakterisierung von Subpopulationen der Epitop-spezifischen CD8+ T-Zellen identifizierte die SLECs (short-lived-effector cells; CD127low CD62Llow KLRG1high) als die dominante Population in Lunge und Milz während der mCMV-Latenz.rnIn einem weiteren Teil der Arbeit sollte untersucht werden, ob IE-Genexpression zur Etablierung von Latenz notwendig ist. Mit Hilfe der Rekombinanten mCMV-Δie2-DTR, die die Gensequenz des Diphtherietoxin-Rezeptors (DTR) anstelle des Gens ie2 trägt, konnten infizierte, DTR exprimierende Zellen durch eine DT-Applikation konditional depletiert werden.rnIm latent infizierbaren Zelltyp der Leber, den LSECs (liver sinusoidal endothelial cells) wurde die virale Load durch 90-stündige DT–Applikation nach mCMV-Δie2-DTR Infektion auf das Level latent infizierter LSECs reduziert. Diese Daten sprechen für die Hypothese eines von Beginn an inaktiven Genoms, das keine IE-Genexpression zur Latenz-Etablierung benötigt. Zusätzlich stellt dieser Ansatz ein neues Tier-Modell zur Latenz-Etablierung dar. Verringerte Wartezeiten bis zur vollständigen Latenz-Etablierung, im Vergleich zum bisherigen Knochenmarktransplantations-Modell, könnten anfallende Tierhaltungskosten erheblich reduzieren und das Voranschreiten der Forschung beschleunigen.
Resumo:
In dieser Arbeit werden formstabile, amphiphile, oberflächenstrukturierte Polyphenylendendrimere (PPDs) mit verschiedenen Oberflächenpolaritäten beschrieben. Die physikalisch-chemischen Eigenschaften dieser Makromoleküle wurden studiert, welche ein gutes Verständnis der Nanoumgebung amphiphiler PPDs lieferten. Auch lichtinduzierte Polaritätsänderung wurde untersucht. Mit dem Konzept einer gleichmäßigen Verteilung polarer Bereiche auf der Peripherie hydrophober PPPs gelang es, Transportsysteme für Fettsäuren und Zytostatika zu erzeugen, welche charakteristische Merkmale natürlicher Transportproteine wie Albumin in sich vereinen. Hierzu zählen eine stabile dreidimensionale Form, die Ausbildung von Bindungstaschen sowie eine definierte strukturierte Oberfläche aus hydrophilen und hydrophoben Bereichen. Die Verfügbarkeit von lipophilen Bindungstaschen übertrifft sogar die des Albumins. Im Gegensatz zu Polymeren kann die Wirkstoffaufnahme bei PPDs exakt bestimmt werden. Die Anpassung der peripheren Gruppen beeinflusst den zellulären Aufnahmemechanismus. Es konnten effiziente Zellaufnahmen in A549-Zellen sowie der Transport und die intrazelluläre Freisetzung von Doxorubicin erreicht werden. Manche PPDs bieten eine Größe und Architektur, die es ermöglicht, Endothelzellen des Gehirns zu durchdringen. Es wurde auch der andere Extremfall untersucht, indem alle polaren Gruppen auf einer Hemisphäre akkumuliert wurden. Zur Darstellung solcher Janus-Dendrimere wurde ein neues Synthesekonzept herausgearbeitet und die erhaltenen Janus-Dendrimere mittels Lichtstreuung untersucht, wobei definierte perlenschnurartige Aggregate gefunden wurden. Weiterhin wurden semifluorierte Amphiphile vorgestellt, welche die Möglichkeit zur Selbstorganisation durch Nanophasenseparation bieten.
Resumo:
Eine verstärkte Transkription von NADPH-Oxidasen (Nox) wird mit der Entstehung von atherosklerotischer Veränderungen in Verbindung gebracht. Die Arbeit unserer Gruppe zeigte, dass die Aktivität der Proteinkinase C (PKC) zu einer Nox4-Hochregulation führt, der dominanten NOX Isoform in endothelialen Zellen. Die vorliegende Arbeit zielte auf die Aufdeckung der dowm-stream gelegenen Mechanismen. Die Behandlung von humanen EA.hy 926-Zellen mit dem PKC Aktivator Phorbol-12-Myristat-13-Acetat (PMA) für 48 h führte in eine signifikante Nox4-mRNA-Hochregulation, welche mittels PKC-Inhibitoren oder PKC alpha siRNA abgewendet werden konnte. PMA führte zu einer andauernden Aktivierung der MAP-Kinase Erk1/2. Die PMA vermittelte Nox4-Expression konnte durch Erk1/2-Inhibitoren oder durch Erk1/2-Knock-down geblockt werden. Down-stream konnte die Involvierung der Erk1/2-Substarte Elk-1 und c-Fos mittels siRNA-Experimente gezeigt werden. Darüber hinaus blockte die Inhibierung der Histondeacetylasen (HDACs) mit Scriptaid oder durch HDAC3-Knock-down mittels siRNA die PMA-induzierte Nox4-Expression in EA.hy 926-Zellen, weswegen eine Rolle für HADC3 in der Regulation der Nox4-Expression angezeigt wurde. Abschließend reduzierte ein Knock-down von p53 (siRNA) deutlich die basale Expression von Nox4, hatte aber nur einen kleinen Effekt auf die PMA-induzierte Nox4-Expression. Zusammenfassend zeigen die Daten der vorliegenden Arbeit, dass in einer PKC alpha induzierten Nox4-mRNA-Hochregulation Erk1/2, Elk-1, cFos und HDAC3 involviert sind.
Resumo:
Patienten, die an Osteosarkom leiden werden derzeit mit intravenös applizierten krebstherapeutischen Mitteln nach Tumorresektion behandelt, was oftmals mit schweren Nebenwirkungen und einem verzögerten Knochenheilungsprozess einhergeht. Darüber hinaus treten vermehrt Rezidive aufgrund von verbleibenden neoplastischen Zellen an der Tumorresektionsstelle auf. Erfolgreiche Knochenregeneration und die Kontrolle von den im Gewebe verbleibenden Krebszellen stellt eine Herausforderung für das Tissue Engineering nach Knochenverlust durch Tumorentfernung dar. In dieser Hinsicht scheint der Einsatz von Hydroxyapatit als Knochenersatzmaterial in Kombination mit Cyclodextrin als Medikamententräger, vielversprechend. Chemotherapeutika können an Biomaterial gebunden und direkt am Tumorbett über einen längeren Zeitraum freigesetzt werden, um verbliebene neoplastische Zellen zu eliminieren. Lokal applizierte Chemotherapie hat diverse Vorteile, einschließlich der direkten zytotoxischen Auswirkung auf lokale Zellen, sowie die Reduzierung schwerer Nebenwirkungen. Diese Studie wurde durchgeführt, um die Funktionsfähigkeit eines solchen Arzneimittelabgabesystems zu bewerten und um Strategien im Bereich des Tissue Engineerings zu entwickeln, die den Knochenheilungsprozess und im speziellen die Vaskularisierung fördern sollen. Die Ergebnisse zeigen, dass nicht nur Krebszellen von der chemotherapeutischen Behandlung betroffen sind. Primäre Endothelzellen wie zum Beispiel HUVEC zeigten eine hohe Sensibilität Cisplatin und Doxorubicin gegenüber. Beide Medikamente lösten in HUVEC ein tumor-unterdrückendes Signal durch die Hochregulation von p53 und p21 aus. Zudem scheint Hypoxie einen krebstherapeutischen Einfluss zu haben, da die Behandlung sensitiver HUVEC mit Hypoxie die Zellen vor Zytotoxizität schützte. Der chemo-protektive Effekt schien deutlich weniger auf Krebszelllinien zu wirken. Diese Resultate könnten eine mögliche chemotherapeutische Strategie darstellen, um den Effekt eines zielgerichteten Medikamenteneinsatzes auf Krebszellen zu verbessern unter gleichzeitiger Schonung gesunder Zellen. Eine erfolgreiche Integration eines Systems, das Arzneimittel abgibt, kombiniert mit einem Biomaterial zur Stabilisierung und Regeneration, könnte gesunden Endothelzellen die Möglichkeit bieten zu proliferieren und Blutgefäße zu bilden, während verbleibende Krebszellen eliminiert werden. Da der Prozess der Knochengeweberemodellierung mit einer starken Beeinträchtigung der Lebensqualität des Patienten einhergeht, ist die Beschleunigung des postoperativen Heilungsprozesses eines der Ziele des Tissue Engineerings. Die Bildung von Blutgefäßen ist unabdingbar für eine erfolgreiche Integration eines Knochentransplantats in das Gewebe. Daher ist ein umfangreich ausgebildetes Blutgefäßsystem für einen verbesserten Heilungsprozess während der klinischen Anwendung wünschenswert. Frühere Experimente zeigen, dass sich die Anwendung von Ko-Kulturen aus humanen primären Osteoblasten (pOB) und humanen outgrowth endothelial cells (OEC) im Hinblick auf die Bildung stabiler gefäßähnlicher Strukturen in vitro, die auch effizient in das mikrovaskuläre System in vivo integriert werden konnten, als erfolgreich erweisen. Dieser Ansatz könnte genutzt werden, um prä-vaskularisierte Konstrukte herzustellen, die den Knochenheilungsprozess nach der Implantation fördern. Zusätzlich repräsentiert das Ko-Kultursystem ein exzellentes in vitro Model, um Faktoren, welche stark in den Prozess der Knochenheilung und Angiogenese eingebunden sind, zu identifizieren und zu analysieren. Es ist bekannt, dass Makrophagen eine maßgebliche Rolle in der inflammatorisch-induzierten Angiogenese spielen. In diesem Zusammenhang hebt diese Studie den positiven Einfluss THP-1 abgeleiteter Makrophagen in Ko-Kultur mit pOB und OEC hervor. Die Ergebnisse zeigten, dass die Anwendung von Makrophagen als inflammatorischer Stimulus im bereits etablierten Ko-Kultursystem zu einer pro-angiogenen Aktivierung der OEC führte, was in einer signifikant erhöhten Bildung blutgefäßähnlicher Strukturen in vitro resultierte. Außerdem zeigte die Analyse von Faktoren, die in der durch Entzündung hervorgerufenen Angiogenese eine wichtige Rolle spielen, eine deutliche Hochregulation von VEGF, inflammatorischer Zytokine und Adhäsionsmoleküle, die letztlich zu einer verstärkten Vaskularisierung beitragen. Diese Resultate werden dem Einfluss von Makrophagen zugeschrieben und könnten zukünftig im Tissue Engineering eingesetzt werden, um den Heilungsprozess zu beschleunigen und damit die klinische Situation von Patienten zu verbessern. Darüber hinaus könnte die Kombination der auf Ko-Kulturen basierenden Ansätze für das Knochen Tissue Engineering mit einem biomaterial-basierenden Arzneimittelabgabesystem zum klinischen Einsatz kommen, der die Eliminierung verbliebener Krebszellen mit der Förderung der Knochenregeneration verbindet.
Resumo:
Die Bisphosphonat-assoziierte Osteonekrose der Kiefer (BP-ONJ) stellt eine ernstzunehmende Nebenwirkung der Therapie mit stickstoffhaltigen Bisphosphonaten (N-BP) dar, deren Ätiologie bisher noch nicht vollständig geklärt ist. Da entzündliche Prozesse eine wichtige Rolle zu spielen scheinen, wurde der Einfluss verschiedener Bisphosphonate auf die Mechanismen der granulozytären Erregerabwehr untersucht. Die N-BP Ibandronat, Pamidronat und Zoledronat steigerten die Phagozytose und den oxidativen Burst signifikant. Die fMLP-stimulierte Chemotaxis wurde durch Ibandronat und Zoledronat signifikant reduziert. Das stickstofffreie Clodronat zeigte keinen Effekt auf die getesteten Abwehrmechanismen. Auf der Suche nach therapeutischen Optionen gegen die BP-ONJ wurden die Isoprenoide Farnesol, Geranylgeraniol, Eugenol, Menthol, Limonene und Squalene auf deren Fähigkeit untersucht, die schädigenden Effekte Zoledronats auf verschiedene Zelllinien zu antagonisieren. Geranylgeraniol zeigte als einzige Verbindung eine protektive Wirkung auf gingivale Fibroblasten, Endothelzellen und Osteoblasten. Desweiteren kam es unter Zoledronat zum Anstieg der kleinen GTPasen RhoA und RhoB in gingivalen Fibroblasten. Auch der Gehalt an GTP-gebundenem RhoA stieg nach Zoledronat-Inkubation. Der Einfluss des N-BPs ließ sich auch auf Proteinebene durch Geranylgeraniol antagonisieren und nicht durch Farnesol. Die Tatsache, dass N-BP die granulozytäre Abwehr beeinflussen, unterstützt die Bedeutung keimreduzierender Maßnahmen im Rahmen der Nekroseprophylaxe und -therapie. Außerdem untermauern die Ergebnisse der Arbeit das Potential Geranylgeraniols als neue therapeutische Option.
Resumo:
Poly(ethylene glycol) (PEG) is used in a broad range of applications due to its unique combination of properties and is approved use in formulations for body-care products, edibles and medicine. This thesis aims at the synthesis and characterization of novel heterofunctional PEG structures and the establishment of diethyl squarate as a suitable linker for the covalent attachment to proteins. Chapter 1 is an introduction on the properties and applications of PEG as well as the fascinating chemistry of squaric acid derivatives. In Chapter 1.1, the synthesis and properties of PEG are described, and the versatile applications of PEG derivatives in everyday products are emphasized with a focus on PEG-based pharmaceuticals and nonionic surfactants. This chapter is written in German, as it was published in the German Journal Chemie in unserer Zeit. Chapter 1.2 deals with PEGs major drawbacks, its non-biodegradability, which impedes parenteral administration of PEG conjugates with polyethers exceeding the renal excretion limit, although these would improve blood circulation times and passive tumor targeting. This section gives a comprehensive overview of the cleavable groups that have been implemented in the polyether backbone to tackle this issue as well as the synthetic strategies employed to accomplish this task. Chapter 1.3 briefly summarizes the chemical properties of alkyl squarates and the advantages in protein conjugation chemistry that can be taken from its use as a coupling agent. In Chapter 2, the application of diethyl squarate as a coupling agent in the PEGylation of proteins is illustrated. Chapter 2.1 describes the straightforward synthesis and characterization of squaric acid ethyl ester amido PEGs with terminal hydroxyl functions or methoxy groups. The reactivity and selectivity of theses activated PEGs are explored in kinetic studies on the reactions with different lysine and other amino acid derivatives, followed by 1H NMR spectroscopy. Further, the efficient attachment of the novel PEGs to a model protein, i.e., bovine serum albumin (BSA), demonstrates the usefulness of the new linker for the PEGylation with heterofunctional PEGs. In Chapter 2.3 initial studies on the biocompatibility of polyether/BSA conjugates synthesized by the squaric acid mediated PEGylation are presented. No cytotoxic effects on human umbilical vein endothelial cells exposed to various concentrations of the conjugates were observed in a WST-1 assay. A cell adhesion molecule - enzyme immunosorbent assay did not reveal the expression of E-selectin or ICAM-1, cell adhesion molecules involved in inflammation processes. The focus of Chapter 3 lies on the syntheses of novel heterofunctional PEG structures which are suitable candidates for the squaric acid mediated PEGylation and exhibit superior features compared to established PEGs applied in bioconjugation. Chapter 3.1 describes the synthetic route to well-defined, linear heterobifunctional PEGs carrying a single acid-sensitive moiety either at the initiation site or at a tunable position in the polyether backbone. A universal concept for the implementation of acetal moieties into initiators for the anionic ring-opening polymerization (AROP) of epoxides is presented and proven to grant access to the degradable PEG structures aimed at. The hydrolysis of the heterofunctional PEG with the acetal moiety at the initiating site is followed by 1H NMR spectroscopy in deuterium oxide at different pH. In an exploratory study, the same polymer is attached to BSA via the squarate acid coupling and subsequently cleaved from the conjugate under acidic conditions. Furthermore, the concept for the generation of acetal-modified AROP initiators is demonstrated to be suitable for cholesterol, and the respective amphiphilic cholesteryl-PEG is cleaved at lowered pH. In Chapter 3.2, the straightforward synthesis of α-amino ω2-dihydroxyl star-shaped three-arm PEGs is described. To assure a symmetric length of the hydroxyl-terminated PEG arms, a novel AROP initiator is presented, who’s primary and secondary hydroxyl groups are separated by an acetal moiety. Upon polymerization of ethylene oxide for these functionalities and subsequent cleavage of the acid-labile unit no difference in the degree of polymerization is seen for both polyether fragments.
Resumo:
Verschiedene Krankheiten gehen mit einer fehlerhaften Vaskularisierung einher. Allerdings ist der Erfolg der derzeitig vorhandenen Therapieansätze, die sich z.B. auf VEGF fokussieren, beschränkt. Aus diesem Grund ist es wichtig, neue Strategien zur Regulation der Angiogenese zu entwickeln. Hierbei stehen neue Signaltransduktions-wege im Fokus, die sich als vielversprechend erweisen, um Angiogenese zu fördern oder zu inhibieren. Die Blutgefäßneubildung ist ein hochregulierter Prozess, der mit einer hohen Proteinsyntheserate verknüpft ist. Die Angiogenese wurde bereits mit dem ER-Stress Signaltransduktionsweg, der Unfolded Protein Response (UPR), in Verbindung gebracht (Zeng et al., 2013; Bouvier et al., 2012). Eine im Rahmen der vorliegenden Studie durchgeführte histologische Untersuchung konnte eine Fehlregulierung der Expression von UPR beteiligten Proteinen in vivo unter pathologischen Bedingungen gezeigt werden. Bemerkenswerter Weise war BiP, der Hauptsensor der UPR, in Endothelzellen von Angiosarkomen sehr stark exprimiert. In in vitro Experimenten wurde gezeigt, dass das Herunterregulieren von BiP mittels RNAi Einfluss auf die inflammatorische Antwort und die Bildung angiogener Strukturen in Endothelzellen nimmt. Das Herunterregulieren des Proteins BiP verstärkte die inflammatorische Antwort von HUVEC, was sich in einer gesteigerten Bildung von IL-8 und ICAM-1 äußerte und wurde auf die Aktivierung der UPR durch die verringerte Menge an BiP zurückgeführt. Der Phänotyp BiP-herunterregulierter Zellen entsprach dem untransfizierter Zellen, welcher durch das Cytoskelett und die Expression des endothelspezifischen Markers CD31 charakterisiert wurde. Im Gegensatz dazu änderte sich der Grad der Glykosylierung in transfizierten Zellen. Im Hinblick auf die Blutgefäßbildung, zeigten sich eine gehemmte Migration und eine inhibierte Bildung Gefäß-ähnlicher Strukturen in BiP-herunterregulierten Zellen. In diesen Zellen war die Expression von KDR auffallend stark inhibiert, wohingegen die Flt-1 Expression sich als gleichbleibend herausstellte, was ebenfalls auf die Aktivierung der UPR zurückgeführt werden konnte. Alternativ wäre der reduzierte Level des Proteins BiP im Hinblick auf die Funktion als Helferenzym in der Proteinfaltung eine mögliche Erklärung für die gehemmte Expression von KDR. Die Ergebnisse dieser Studie deuten darauf hin, dass stabile Spiegel von BiP die Regulierung der Angiogenese durch die Kontrolle der UPR in physiologischen Prozessen unterstützen könnte. Eine Fehlregulierung von BiP durch Unterdrückung der UPR, wie z.B. in malignen Tumoren, könnte Tumorzellen und beteiligten Endothelzellen einen Vorteil verschaffen und zu einer gestörten Vaskularisierung führen. Somit stellt das Stresssensorprotein BiP und die UPR einen potentiellen Angriffspunkt für die Regulation der Angiogenese dar.
Resumo:
The blood-brain barrier (BBB) and the blood-spinal cord barrier (BSCB) separate the brain and the spinal cord from the circulating blood and are important for the maintenance of the CNS homeostasis. They build a physical barrier thereby protecting the CNS from pathogens and toxic agents, and their disruption plays a crucial role in the pathogenesis of several CNS disorders. In this thesis, the blood-CNS-barriers were studied via in vitro models in two case studies for neurodegenerative disorders, in particular Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). The first model evaluates treatment possibilities of AD using nanotechnology-based strategies. Since the toxic amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of AD, reduced generation or enhanced clearance of Aβ42 peptides are expected to modify the disease course in AD. Therefore, several Aβ42-lowering drugs like flurbiprofen had been tested in clinical trials, but most of them failed due to their low brain penetration. Here, flurbiprofen was embedded in polylactide (PLA) nanoparticles and its transport was examined in an in vitro BBB model. The embedding of flurbiprofen into the nanoparticles disguised its cytotoxic potential and enabled the administration of higher drug concentrations which resulted in a sufficient transport of the drug across an endothelial cell monolayer. These results demonstrate that non-permeable drugs can be transported efficiently via nanoparticles and that these nanotechnology-based strategies are a promising tool to generate novel therapeutic options for AD and other CNS diseases. rnThe focus of the second project was to investigate the impaired integrity of the BSCB in a mouse model for ALS. About 20% of all familial ALS cases are associated with missense mutations or small deletions in the gene that encodes Cu/Zn-superoxide dismutase 1 (SOD1). To date, the molecular mechanisms resulting in ALS are still unknown, but there is evidence that the disruption of the BSCB is one of the primary pathological events. In both familial and sporadic ALS patients, loss of endothelial integrity and endothelial cell damage was observed, and studies with SOD1 transgenic mice demonstrated that the BSCB disruption was found prior to motor neuron degeneration and neurovascular inflammation. Thus, an in vitro model for ALS endothelial cells was generated which exhibited comparable integrity characteristics and tight junction (TJ) protein expression profiles as isolated primary endothelial cells of the BSCB of SOD1 transgenic mice. In this, an alteration of the βcat/AKT/FoxO1 pathway, which regulates the expression of the TJ protein claudin-5, could be observed. These data furthermore indicate that ALS is a neurovascular disease, and understanding of the primary events in ALS pathogenesis will hopefully provide ideas for the development of new therapeutic strategies. rn
Resumo:
Der Grund für die schlechte Prognose beim Nierenzellkarzinom (NZK) stellt nicht der Primärtumor dar sondern ist vielmehr der häufigen Ausbildung von Fernmetastasen geschuldet. Etwa 30 % aller Patienten mit fortgeschrittenem NZK bilden dabei Metastasen in den Knochen aus. Das Knochenmilieu scheint, aufgrund der hohen Frequenz der knochenspezifischen Metastasierung, einen idealen Wachstumslokus für die Nierenkarzinomzellen dazustellen und rückte in der jüngsten Vergangenheit in den Fokus der Forschung. Dabei konnte der Calcium-sensitive Rezeptor (CaSR), der im gesunden Gewebe die Konzentration der extrazellulären Calcium-Ionen reguliert und besonders in der Niere von Bedeutung ist, mit der Metastasierung in die Knochen in Zusammenhang gebracht werden. Die Knochen stellen im Körper das Organ mit der höchsten Calcium-Konzentration dar. Durch ständigen Knochenmetabolismus werden Calcium-Ionen freigesetzt, welche CaSR-exprimierende Zellen aktivieren können. Aus diesem Grund wurden im Zusammenhang mit dieser Arbeit Nierenkarzinomzellen (786 O) sowie gesunde Nierenzellen (HEK 293) mit dem Gen des CaSR transfiziert und anschließend unter dem Einfluss von Calcium (10 mM – 30 Min.), einem CaSR-Aktivator (Cinacalcet (10 µM – 1 Std.)), sowie einem CaSR-Inhibitor (NPS2143 (10 µM – 1 Std.)) auf Unterschiede im zellulären Verhalten hin untersucht.rnBereits ohne Calcium-Behandlung zeigten die CaSR-transfizierten 786 O-Zellen ein gesteigertes Migrationsverhalten (durchgeführt in einer Boyden Kammer, Fibronektin als Chemotaxin) und ein erhöhtes Adhäsionspotential (zum einen an Kompo¬nenten der EZM (Fibronektin und Kollagen I) und zum anderen an HUVEC). Bei den CaSR-transfizierten HEK 293-Zellen wurde nur die Migration positiv beeinflusst. Nach einer 30-minütigen Behandlung mit Calcium zeigten die CaSR-transfizierten 786 O-Zellen eine starke Zunahme des Adhäsions- und Proli¬ferations-verhaltens, sowie eine verstärkte Migration bei Verwendung von Calcium als Chemotaxin. CaSR-transfizierte HEK 293-Zellen hingegen zeigten keine Migration und nach Calcium-Behandlung nur geringfügige Änderungen in Adhäsion und Proliferation. Konsistent mit diesen Ergebnissen war die Auswertung der intrazellulären Signalwege mit Hilfe von Western Blot-Analysen. In CaSR-expri-mierenden 786 O-Zellen waren die Signalwege AKT, ERK, JNK und p38α nach Calcium-Behandlung deutlich erhöht. In den HEK 293-Zellen kam es zu einer Zunahme der Proteinmenge aktivierter ERK-, JNK-, Paxillin- und SHC-Moleküle. Mit Hilfe einer Kombinationsbehandlung aus NPS2143 und Calcium konnte der Calcium-bedingte Effekt in durchweg allen Untersuchungen wieder bis auf das Kontrollniveau gesenkt werden. Die Verwendung von Cinacalcet und Calcium führte zwar erneut zu deutlichen Steigerungen der zellulären Vorgänge, lag aber immer unter dem Calcium-abhängigen Maximum.rnDurch die Simulation der Vorgänge, die während einer Metastasierung ablaufen, konnte gezeigt werden, dass der CaSR in Nierenkarzinomzellen die Knochen-metastasierung induziert. Sollten sich diese Zusammenhänge in vivo im Mausmodell bestätigen, könnte der CaSR zukünftig als Marker für eine Früherkennung von Knochenmetastasen fungieren. Zudem könnten indivi¬dual¬isierte Therapieansätze entwickelt werden, die knochenmetastasierende Zellen bereits vor Metastasierung effizient bekämpfen können.rn