11 resultados para premembrane and envelope gene junction

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corpus luteum (CL) lifespan is characterized by a rapid growth, differentiation and controlled regression of the luteal tissue, accompanied by an intense angiogenesis and angioregression. Indeed, the CL is one of the most highly vascularised tissue in the body with a proliferation rate of the endothelial cells 4- to 20-fold more intense than in some of the most malignant human tumours. This angiogenic process should be rigorously controlled to allow the repeated opportunities of fertilization. After a first period of rapid growth, the tissue becomes stably organized and prepares itself to switch to the phenotype required for its next apoptotic regression. In pregnant swine, the lifespan of the CLs must be extended to support embryonic and foetal development and vascularisation is necessary for the maintenance of luteal function. Among the molecules involved in the angiogenesis, Vascular Endothelial Growth Factor (VEGF) is the main regulator, promoting endothelial cells proliferation, differentiation and survival as well as vascular permeability and vessel lumen formation. During vascular invasion and apoptosis process, the remodelling of the extracellular matrix is essential for the correct evolution of the CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). Another important factor that plays a role in the processes of angiogenesis and angioregression during the CL formation and luteolysis is the isopeptide Endothelin-1 (ET-1), which is well-known to be a potent vasoconstrictor and mitogen for endothelial cells. The goal of the present thesis was to study the role and regulation of vascularisation in an adult vascular bed. For this purpose, using a precisely controlled in vivo model of swine CL development and regression, we determined the levels of expression of the members of VEGF system (VEGF total and specific isoforms; VEGF receptor-1, VEGFR-1; VEGF receptor-2, VEGFR-2) and ET- 1 system (ET-1; endothelin converting enzyme-1, ECE-1; endothelin receptor type A, ET-A) as well as the activity of the Ca++/Mg++-dependent endonucleases and gelatinases (MMP-2 and MMP-9). Three experiments were conducted to reach such objectives in CLs isolated from ovaries of cyclic, pregnant or fasted gilts. In the Experiment I, we evaluated the influence of acute fasting on VEGF production and VEGF, VEGFR-2, ET-1, ECE-1 and ET-A mRNA expressions in CLs collected on day 6 after ovulation (midluteal phase). The results indicated a down-regulation of VEGF, VEGFR-2, ET-1 and ECE-1 mRNA expression, although no change was observed for VEGF protein. Furthermore, we observed that fasting stimulated steroidogenesis by luteal cells. On the basis of the main effects of VEGF (stimulation of vessel growth and endothelial permeability) and ET-1 (stimulation of endothelial cell proliferation and vasoconstriction, as well as VEGF stimulation), we concluded that feed restriction possibly inhibited luteal vessel development. This could be, at least in part, compensated by a decrease of vasal tone due to a diminution of ET-1, thus ensuring an adequate blood flow and the production of steroids by the luteal cells. In the Experiment II, we investigated the relationship between VEGF, gelatinases and Ca++/Mg++-dependent endonucleases activities with the functional CL stage throughout the oestrous cycle and at pregnancy. The results demonstrated differential patterns of expression of those molecules in correspondence to the different phases of the oestrous cycle. Immediately after ovulation, VEGF mRNA/protein levels and MMP-9 activity are maximal. On days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels, while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1. Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed. These results suggested that during the very early luteal phase, high MMPs activities coupled with high VEGF levels drive the tissue to an angiogenic phenotype, allowing CL growth under LH (Luteinising Hormone) stimulus, while during the late luteal phase, low VEGF and elevate MMPs levels may play a role in the apoptotic tissue and extracellular matrix remodelling during structural luteolysis. In the Experiment III, we described the expression patterns of all distinct VEGF isoforms throughout the oestrous cycle. Furthermore, the mRNA expression and protein levels of both VEGF receptors were also evaluated. Four novel VEGF isoforms (VEGF144, VEGF147, VEGF182, and VEGF164b) were found for the first time in swine and the seven identified isoforms presented four different patterns of expression. All isoforms showed their highest mRNA levels in newly formed CLs (day 1), followed by a decrease during mid-late luteal phase (days 10–17), except for VEGF182, VEGF188 and VEGF144 that showed a differential regulation during late luteal phase (day 14) or at luteolysis (day 17). VEGF protein levels paralleled the most expressed and secreted VEGF120 and VEGF164 isoforms. The VEGF receptors mRNAs showed a different pattern of expression in relation to their ligands, increasing between day 1 and 3 and gradually decreasing during the mid-late luteal phase. The differential regulation of some VEGF isoforms principally during the late luteal phase and luteolysis suggested a specific role of VEGF during tissue remodelling process that occurs either for CL maintenance in case of pregnancy or for noncapillary vessel development essential for tissue removal during structural luteolysis. In summary, our findings allow us to determine relationships among factors involved in the angiogenesis and angioregression mechanisms that take place during the formation and regression of the CL. Thus, CL provides a very interesting model for studying such factors in different fields of the basic research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MYCN oncogene amplification/expression is a feature of many childhood tumors, and some adult tumors, and it is associated with poor prognosis. While MYC expression is ubiquitary, MYCN has a restricted expression after birth and it is an ideal target for an effective therapy. PNAs belong to the latest class of nucleic acid-based therapeutics, and they can bind chromosomal DNA and block gene transcription (anti-gene activity). We have developed an anti-gene PNA that targets specifically the MYCN gene to block its transcription. We report for the first time MYCN targeted inhibition in Rhabdomyosarcoma (RMS) by the anti-MYCN-PNA in RMS cell lines (four ARMS and four ERMS) and in a xenograft RMS mouse model. Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, comprising two main subgroups [Alveolar (ARMS) and Embryonal (ERMS)]. ARMS is associated with a poorer prognosis. MYCN amplification is a feature of both the ERMS and ARMS, but the MYCN amplification and expression levels shows a significant correlation and are greater in ARMS, in which they are associated with adverse outcome. We found that MYCN mRNA and protein levels were higher in the four ARMS (RH30, RH4, RH28 and RMZ-RC2) than in the four ERMS (RH36, SMS-CTR, CCA and RD) cell lines. The potent inhibition of MYCN transcription was highly specific, it did not affect the MYC expression, it was followed by cell-growth inhibition in the RMS cell lines which correlated with the MYCN expression rate, and it led to complete cell-growth inhibition in ARMS cells. We used a mutated- PNA as control. MYCN silencing induced apoptosis. Global gene expression analysis (Affymetrix microarrays) in ARMS cells treated with the anti-MYCN-PNA revealed genes specifically induced or repressed, with both genes previously described as targets of N-myc or Myc, and new genes undescribed as targets of N-myc or Myc (mainly involved in cell cycle, apoptosis, cell motility, metastasis, angiogenesis and muscle development). The changes in the expression of the most relevant genes were confirmed by Real-Time PCR and western blot, and their expression after the MYCN silencing was evaluated in the other RMS cell lines. The in vivo study, using an ARMS xenograft murine model evaluated by micro-PET, showed a complete elimination of the metabolic tumor signal in most of the cases (70%) after anti-MYCN-PNA treatment (without toxicity), whereas treatment with the mutated-PNA had no effect. Our results strongly support the development of MYCN anti-gene therapy for the treatment of RMS, particularly for poor prognosis ARMS, and of other MYCN-expressing tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we elucidate the role of polyunsaturated fatty acids (PUFAs) in the prevention of cardiovascular diseases, focusing the attention on their role in the modulation of acyl composition of cell lipids and of gene expression. Regarding this latter mechanism, the effectiveness of PUFAs as activators of two transcriptional factors, SREBPs and PPARs, have been considered. Two different model system have been used: primary cultures of neonatal rat cardiomyocytes and an human hepatoma cell line (HepG2). Cells have been supplemented with different PUFAs at physiological concentration, and special attention has been devoted to the main n-3 PUFAs, EPA and DHA. PUFAs influence on global gene expression in cardiomyocytes has been evaluated using microarray technique. Furthermore, since it is not fully elucidated which transcription factors are involved in this modulation in the heart, expression and activation of the three different PPAR isoforms have been investigated. Hepatocytes have been used as experimental model system in the evaluation of PUFAs effect on SREBP activity. SREBPs are considered the main regulator of cholesterol and triglyceride synthesis, which occur mainly in the liver. In both experimental models the modification of cell lipid fatty acid composition subsequent to PUFAs supplementation has been evaluated, and related to the effects observed at molecular level. The global vision given by the obtained results may be important for addressing new researches and be useful to educators and policy makers in setting recommendations for reaching optimal health through good nutrition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial small regulatory RNAs (sRNAs) are posttranscriptional regulators involved in stress responses. These short non-coding transcripts are synthesised in response to a signal, and control gene expression of their regulons by modulating the translation or stability of the target mRNAs, often in concert with the RNA chaperone Hfq. Characterization of a Hfq knock out mutant in Neisseria meningitidis revealed that it has a pleiotropic phenotype, suggesting a major role for Hfq in adaptation to stresses and virulence and the presence of Hfq-dependent sRNA activity. Global gene expression analysis of regulated transcripts in the Hfq mutant revealed the presence of a regulated sRNA, incorrectly annotated as an open reading frame, which we renamed AniS. The synthesis of this novel sRNA is anaerobically induced through activation of its promoter by the FNR global regulator and through global gene expression analyses we identified at least two predicted mRNA targets of AniS. We also performed a detailed molecular analysis of the action of the sRNA NrrF,. We demonstrated that NrrF regulates succinate dehydrogenase by forming a duplex with a region of complementarity within the sdhDA region of the succinate dehydrogenase transcript, and Hfq enhances the binding of this sRNA to the identified target in the sdhCDAB mRNA; this is likely to result in rapid turnover of the transcript in vivo. In addition, in order to globally investigate other possible sRNAs of N. meningitdis we Deep-sequenced the transcriptome of this bacterium under both standard in vitro and iron-depleted conditions. This analysis revealed genes that were actively transcribed under the two conditions. We focused our attention on the transcribed non-coding regions of the genome and, along with 5’ and 3’ untranslated regions, 19 novel candidate sRNAs were identified. Further studies will be focused on the identification of the regulatory networks of these sRNAs, and their targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basal-like tumor is an aggressive breast carcinoma subtype that displays an expression signature similar to that of the basal/myoepithelial cells of the breast tissue. Basal-like carcinoma are characterized by over-expression of the Epidermal Growth Factor receptor (EGFR), high frequency of p53 mutations, cytoplasmic/nuclear localization of beta-catenin, overexpression of the Hypoxia inducible factor (HIF)-1alpha target Carbonic Anhydrase isoenzime 9 (CA9) and a gene expression pattern similar to that of normal and cancer stem cells, including the over-expression of the mammary stem cell markers CD44. In this study we investigated the role of p53, EGFR, beta-catenin and HIF-1alpha in the regulation of stem cell features and genes associated with the basal-like gene expression profile. The findings reported in this investigation indicate that p53 inactivation in ductal breast carcinoma cells leads to increased EGFR mRNA and protein levels. In our experimental model, EGFR overexpression induces beta-catenin cytoplasmatic stabilization and transcriptional activity and, by that, leads to increased aggressive features including mammosphere (MS) forming and growth capacity, invasive potential and overexpression of the mammary stem cell gene CD44. Moreover we found that EGFR/beta-catenin axis promotes hypoxia survival in breast carcinoma cells via increased CA9 expression. Indeed beta-catenin positively regulates CA9 expression upon hypoxia exposure. Interestingly we found that beta-catenin inhibits HIF-1alpha transcriptional activity. Looking for the mechanism, we found that CA9 expression is promoted by HIF-1alpha and cytoplasmatic beta-catenin further increased it post-transcriptionally, via direct mRNA binding and stabilization. These data reveal a functional beta-catenin/HIF-1alpha interplay among hallmarks of basal-like tumors and unveil a new functional role for cytoplasmic beta-catenin in the phenotype of such tumors. Therefore it can be proposed that the interplay here described among EGFR/beta-catenin and HIF-1alpha may play a role in breast cancer stem cell survival and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jasmonates (JAs) and spermidine (Sd) influence fruit (and seed) development and ripening. In order to unravel their effects in peach fruit, at molecular level, field applications of methyl jasmonate (MJ) and propyl dihydrojasmonate (PDJ), and Sd were performed at an early developmental stage (late S1). At commercial harvest, JA-treated fruit were less ripe than controls. Realtime RT-PCR analyses confirmed a down-regulation of ethylene biosynthetic, perception and signaling genes, and flesh softening-related genes. The expression of cell wall-related genes, of a sugar-transporter and hormone-related transcript levels was also affected by JAs. Seeds from JA-treated fruit showed a shift in the expression of developmental marker genes suggesting that the developmental program was probably slowed down, in agreement with the contention that JAs divert resources from growth to defense. JAs also affected phenolic content and biosynthetic gene expression in the mesocarp. Levels of hydroxycinnamic acids, as well as those of flavan-3-ols, were enhanced, mainly by MJ, in S2. Transcript levels of phenylpropanoid pathway genes were up-regulated by MJ, in agreement with phenolic content. Sd-treated fruits at harvest showed reduced ethylene production and flesh softening. Sd induced a short-term and long-term response patterns in endogenous polyamines. At ripening the up-regulation of the ethylene biosynthetic genes was dramatically counteracted by Sd, leading to a down-regulation of softening-related genes. Hormone-related gene expression was also altered both in the short- and long-term. Gene expression analyses suggest that Sd interfered with fruit development/ripening by interacting with multiple hormonal pathways and that fruit developmental marker gene expression was shifted ahead in accord with a developmental slowing down. 24-Epibrassinolide was applied to Flaminia peaches under field conditions early (S1) or later (S3) during development. Preliminary results showed that, at harvest, treated fruit tended to be larger and less mature though quality parameters did not change relative to controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterobacteriaceae genomes evolve through mutations, rearrangements and horizontal gene transfer (HGT). The latter evolutionary pathway works through the acquisition DNA (GEI) modules of foreign origin that enhances fitness of the host to a given environment. The genome of E. coli IHE3034, a strain isolated from a case of neonatal meningitis, has recently been sequenced and its subsequent sequence analysis has predicted 18 possible GEIs, of which: 8 have not been previously described, 5 fully meet the pathogenic island definition and at least 10 that seem to be of prophagic origin. In order to study the GEI distribution of our reference strain, we screened for the presence 18 GEIs a panel of 132 strains, representative of E. coli diversity. Also, using an inverse nested PCR approach we identified 9 GEI that can form an extrachromosomal circular intermediate (CI) and their respective attachment sites (att). Further, we set up a qPCR approach that allowed us to determine the excision rates of 5 genomic islands in different growth conditions. Four islands, specific for strains appertaining to the sequence type complex 95 (STC95), have been deleted in order to assess their function in a Dictyostelium discoideum grazing assays. Overall, the distribution data presented here indicate that 16 IHE3034 GEIs are more associated to the STC95 strains. Also the functional and genetic characterization has uncovered that GEI 13, 17 and 19 are involved in the resistance to phagocitation by Dictyostelium d thus suggesting a possible role in the adaptation of the pathogen during certain stages of infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that many realistic mathematical models of biological systems, such as cell growth, cellular development and differentiation, gene expression, gene regulatory networks, enzyme cascades, synaptic plasticity, aging and population growth need to include stochasticity. These systems are not isolated, but rather subject to intrinsic and extrinsic fluctuations, which leads to a quasi equilibrium state (homeostasis). The natural framework is provided by Markov processes and the Master equation (ME) describes the temporal evolution of the probability of each state, specified by the number of units of each species. The ME is a relevant tool for modeling realistic biological systems and allow also to explore the behavior of open systems. These systems may exhibit not only the classical thermodynamic equilibrium states but also the nonequilibrium steady states (NESS). This thesis deals with biological problems that can be treat with the Master equation and also with its thermodynamic consequences. It is organized into six chapters with four new scientific works, which are grouped in two parts: (1) Biological applications of the Master equation: deals with the stochastic properties of a toggle switch, involving a protein compound and a miRNA cluster, known to control the eukaryotic cell cycle and possibly involved in oncogenesis and with the propose of a one parameter family of master equations for the evolution of a population having the logistic equation as mean field limit. (2) Nonequilibrium thermodynamics in terms of the Master equation: where we study the dynamical role of chemical fluxes that characterize the NESS of a chemical network and we propose a one parameter parametrization of BCM learning, that was originally proposed to describe plasticity processes, to study the differences between systems in DB and NESS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic pain affects one in five adults, reducing quality of life and increasing risk of developing co-morbidities such as depression. Neuropathic pain results by lesions to the nervous system that alter its structure and function leading to spontaneous pain and amplified responses to noxious and innocuous stimuli. The Opioid System is probably the most important system involved in control of nociceptive transmission. Dynorphin and nociceptin systems have been suggested key mediators of some neuropathic pain aspects. An important role also for BDNF has been recently suggested since its involvement in the peripheral and central sensitization phenomena is known. We studied neuroplastic alterations occurring in chronic pain in mice subjected to the chronic constriction injury (CCI). We investigated gene expression alterations of both BDNF and Opioid System at spinal level at different intervals of time. A transient upregulation of pBDNF and pDYN was observed in spinal cord, while increasing upregulation of ppN/OFQ was found in the DRGs of injured mice. Development of neuropathic behavioral signs has been observed in ICR/CD-1 and BDNF+/+ mice, subjected to CCI. A different development of these signs was observed in BDNF+/-. We also studied gene expression changes of investigated systems in different brain areas fourteen days after surgery. We found pBDNF, pDYN, pKOP, ppN/OFQ and pNOP gene expression alterations in several areas of CCI mice. In the same brain regions we also determined bioactive nociceptin peptide levels, and elevated N/OFQ levels were observed in the amygdala area. Histone modifications studies have been performed in BDNF and DYN gene promoters of CCI animal spinal cord showing selected alterations in pDYN gene promoter. In addition, a preliminary characterization of the innovative NOP-EGFP mice was performed. Overall, our results could be useful to understand which and how neuropeptidergic systems are involved in neuroplastic mechanism occurring in neuropathic pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Circulating Fibrocytes (CFs) are bone marrow-derived mesenchymal progenitor cells that express a similar pattern of surface markers related to leukocytes, hematopoietic progenitor cells and fibroblasts. CFs precursor display an ability to differentiate into fibroblasts and Myofibroblasts, as well as adipocytes. Fibrocytes have been shown to contribute to tissue fibrosis in the end-stage renal disease (ESRD), as well as in other fibrotic diseases, leading to fibrogenic process in other organs including lung, cardiac, gut and liver. This evidence has been confirmed by several experimental proofs in mice models of kidney injury. In the present study, we developed a protocol for the study of CFs, by using peripheral blood monocytes cells (PBMCs) samples collected from healthy human volunteers. Thanks to a flow cytometry method, in vitro culture assays and the gene expression assays, we are able to study and characterize this CFs population. Moreover, results confirmed that these approaches are reliable and reproducible for the investigation of the circulating fibrocytes population in whole blood samples. Our final aim is to confirm the presence of a correlation between the renal fibrosis progression, and the different circulating fibrocyte levels in Chronic Kidney Disease (CKD) patients. Thanks to a protocol study presented and accepted by the Ethic Committee we are continuing the study of CFs induction in a cohort of sixty patients affected by CKD, divided in three distinct groups for different glomerular filtration rate (GFR) levels, plus a control group of thirty healthy subjects. Ongoing experiments will determine whether circulating fibrocytes represent novel biomarkers for the study of CKD progression, in the early and late phases of this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochar is the solid C-rich matrix obtained by pyrolysis of biomasses, currently promoted as a soil amendment with the aim to offset anthropogenic C emissions, while ameliorating soil properties and growth conditions. Benefits from biochar seem promising, although scientific understandings are beginning to be explored. In this project, I performed a suite of experiments in controlled and in field conditions with the aims to investigate the effect of biochar on: a) the interaction with minerals; b) Fe nutrition in kiwifruit; c) soil leaching, soil fertility, soil CO2 emissions partitioning, soil bacterial profile and key gene expression of soil nitrification-involved bacteria; d) plant growth, nutritional status, yield, fruit quality and e) its physical-chemical changes as affected by long-term environmental exposure. Biochar released K, P and Mg but retained Fe, Mn, Cu and Zn on its surface which in turn hindered Fe nutrition of kiwifruit trees. A redox reaction on the biochar surface exposed to a Fe source was elucidated. Biochar reduced the amount of leached NH4+-N but increased that of Hg, K, P, Mo, Se and Sn. Furthermore, biochar synergistically interacted with compost increasing soil field capacity, fertility, leaching of DOC, TDN and RSOC, suggesting a priming effect. However, in field conditions, biochar did not affect yield, nutritional status and fruit quality. Actinomadura flavalba, Saccharomonospora viridis, Thermosporomyces composti and Enterobacter spp. were peculiar of the soil amended with biochar plus compost which exhibited the highest band richness and promoted gene expression levels of Nitrosomonas spp., Nitrobacter spp. and enzymatic-related activity. Environmental exposure reduced C, K, pH and water infiltration of biochar which instead resulted in a higher O, Si, N, Na, Al, Ca, Mn and Fe at%. Oxidation occurred on the aged biochar surface, it decreased progressively with depth and induced the development of O-containing functional groups, up to 75nm depth.