5 resultados para nursing development, practice development, practice change, evidence-based practice, barriers to research utilisation, culture of inquiry, research culture, evidence-based practice culture, culture change

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subject of this Ph.D. research thesis is the development and application of multiplexed analytical methods based on bioluminescent whole-cell biosensors. One of the main goals of analytical chemistry is multianalyte testing in which two or more analytes are measured simultaneously in a single assay. The advantages of multianalyte testing are work simplification, high throughput, and reduction in the overall cost per test. The availability of multiplexed portable analytical systems is of particular interest for on-field analysis of clinical, environmental or food samples as well as for the drug discovery process. To allow highly sensitive and selective analysis, these devices should combine biospecific molecular recognition with ultrasensitive detection systems. To address the current need for rapid, highly sensitive and inexpensive devices for obtaining more data from each sample,genetically engineered whole-cell biosensors as biospecific recognition element were combined with ultrasensitive bioluminescence detection techniques. Genetically engineered cell-based sensing systems were obtained by introducing into bacterial, yeast or mammalian cells a vector expressing a reporter protein whose expression is controlled by regulatory proteins and promoter sequences. The regulatory protein is able to recognize the presence of the analyte (e.g., compounds with hormone-like activity, heavy metals…) and to consequently activate the expression of the reporter protein that can be readily measured and directly related to the analyte bioavailable concentration in the sample. Bioluminescence represents the ideal detection principle for miniaturized analytical devices and multiplexed assays thanks to high detectability in small sample volumes allowing an accurate signal localization and quantification. In the first chapter of this dissertation is discussed the obtainment of improved bioluminescent proteins emitting at different wavelenghts, in term of increased thermostability, enhanced emission decay kinetic and spectral resolution. The second chapter is mainly focused on the use of these proteins in the development of whole-cell based assay with improved analytical performance. In particular since the main drawback of whole-cell biosensors is the high variability of their analyte specific response mainly caused by variations in cell viability due to aspecific effects of the sample’s matrix, an additional bioluminescent reporter has been introduced to correct the analytical response thus increasing the robustness of the bioassays. The feasibility of using a combination of two or more bioluminescent proteins for obtaining biosensors with internal signal correction or for the simultaneous detection of multiple analytes has been demonstrated by developing a dual reporter yeast based biosensor for androgenic activity measurement and a triple reporter mammalian cell-based biosensor for the simultaneous monitoring of two CYP450 enzymes activation, involved in cholesterol degradation, with the use of two spectrally resolved intracellular luciferases and a secreted luciferase as a control for cells viability. In the third chapter is presented the development of a portable multianalyte detection system. In order to develop a portable system that can be used also outside the laboratory environment even by non skilled personnel, cells have been immobilized into a new biocompatible and transparent polymeric matrix within a modified clear bottom black 384 -well microtiter plate to obtain a bioluminescent cell array. The cell array was placed in contact with a portable charge-coupled device (CCD) light sensor able to localize and quantify the luminescent signal produced by different bioluminescent whole-cell biosensors. This multiplexed biosensing platform containing whole-cell biosensors was successfully used to measure the overall toxicity of a given sample as well as to obtain dose response curves for heavy metals and to detect hormonal activity in clinical samples (PCT/IB2010/050625: “Portable device based on immobilized cells for the detection of analytes.” Michelini E, Roda A, Dolci LS, Mezzanotte L, Cevenini L , 2010). At the end of the dissertation some future development steps are also discussed in order to develop a point of care (POCT) device that combine portability, minimum sample pre-treatment and highly sensitive multiplexed assays in a short assay time. In this POCT perspective, field-flow fractionation (FFF) techniques, in particular gravitational variant (GrFFF) that exploit the earth gravitational field to structure the separation, have been investigated for cells fractionation, characterization and isolation. Thanks to the simplicity of its equipment, amenable to miniaturization, the GrFFF techniques appears to be particularly suited for its implementation in POCT devices and may be used as pre-analytical integrated module to be applied directly to drive target analytes of raw samples to the modules where biospecifc recognition reactions based on ultrasensitive bioluminescence detection occurs, providing an increase in overall analytical output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, in developed countries, the excessive food intake, in conjunction with a decreased physical activity, has led to an increase in lifestyle-related diseases, such as obesity, cardiovascular diseases, type -2 diabetes, a range of cancer types and arthritis. The socio-economic importance of such lifestyle-related diseases has encouraged countries to increase their efforts in research, and many projects have been initiated recently in research that focuses on the relationship between food and health. Thanks to these efforts and to the growing availability of technologies, the food companies are beginning to develop healthier food. The necessity of rapid and affordable methods, helping the food industries in the ingredient selection has stimulated the development of in vitro systems that simulate the physiological functions to which the food components are submitted when administrated in vivo. One of the most promising tool now available appears the in vitro digestion, which aims at predicting, in a comparative way among analogue food products, the bioaccessibility of the nutrients of interest.. The adoption of the foodomics approach has been chosen in this work to evaluate the modifications occurring during the in vitro digestion of selected protein-rich food products. The measure of the proteins breakdown was performed via NMR spectroscopy, the only techniques capable of observing, directly in the simulated gastric and duodenal fluids, the soluble oligo- and polypeptides released during the in vitro digestion process. The overall approach pioneered along this PhD work, has been discussed and promoted in a large scientific community, with specialists networked under the INFOGEST COST Action, which recently released a harmonized protocol for the in vitro digestion. NMR spectroscopy, when used in tandem with the in vitro digestion, generates a new concept, which provides an additional attribute to describe the food quality: the comparative digestibility, which measures the improvement of the nutrients bioaccessibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change has been acknowledged as a threat to humanity. Most scholars agree that to avert dangerous climate change and to transform economies into low-carbon societies, deep global emission reductions are required by the year 2050. Under the framework of the Kyoto Protocol, the Clean Development Mechanism (CDM) is the only market-based instrument that encourages industrialised countries to pursue emission reductions in developing countries. The CDM aims to pay the incremental finance necessary to operationalize emission reduction projects which are otherwise not financially viable. According to the objectives of the Kyoto Protocol, the CDM should finance projects that are additional to those which would have happened anyway, contribute to sustainable development in the countries hosting the projects, and be cost-effective. To enable the identification of such projects, an institutional framework has been established by the Kyoto Protocol which lays out responsibilities for public and private actors. This thesis examines whether the CDM has achieved these objectives in practice and can thus be considered an effective tool to reduce emissions. To complete this investigation, the book applies economic theory and analyses the CDM from two perspectives. The first perspective is the supply-dimension which answers the question of how, in practice, the CDM system identified additional, cost-effective, sustainable projects and, generated emission reductions. The main contribution of this book is the second perspective, the compliance-dimension, which answers the question of whether industrialised countries effectively used the CDM for compliance with their Kyoto targets. The application of the CDM in the European Union Emissions Trading Scheme (EU ETS) is used as a case-study. Where the analysis identifies inefficiencies within the supply or the compliance dimension, potential improvements of the legal framework are proposed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on the use of metabonomics applications in measuring fish freshness in various biological species and in evaluating how they are stored. This metabonomic approach is innovative and is based upon molecular profiling through nuclear magnetic resonance (NMR). On one hand, the aim is to ascertain if a type of fish has maintained, within certain limits, its sensory and nutritional characteristics after being caught; and on the second, the research observes the alterations in the product’s composition. The spectroscopic data obtained through experimental nuclear magnetic resonance, 1H-NMR, of the molecular profiles of the fish extracts are compared with those obtained on the same samples through analytical and conventional methods now in practice. These second methods are used to obtain chemical indices of freshness through biochemical and microbial degradation of the proteic nitrogen compounds and not (trimethylamine, N-(CH3)3, nucleotides, amino acids, etc.). At a later time, a principal components analysis (PCA) and a linear discriminant analysis (PLS-DA) are performed through a metabonomic approach to condense the temporal evolution of freshness into a single parameter. In particular, the first principal component (PC1) under both storage conditions (4 °C and 0 °C) represents the component together with the molecular composition of the samples (through 1H-NMR spectrum) evolving during storage with a very high variance. The results of this study give scientific evidence supporting the objective elements evaluating the freshness of fish products showing those which can be labeled “fresh fish.”