3 resultados para cancer adjuvant therapy

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Controlled delivery of anticancer drugs through osteotropic nanoparticles (NP) is a novel approach for the adjuvant therapy of osteolytic bone metastases. Doxorubicin (DXR) is widely used in chemotherapy, although its activity is restricted by dose-dependent cardiotoxicity and marrow toxicity. However, its efficacy can be improved when specific targeting at the tumor site is obtained. The aim of this study was to obtain osteotropic biodegradable NP by nanoprecipitation of a copolymer between poly(D,L-lactide-co-glycolide) (PLGA) and an osteotropic bisphosphonate, sodium alendronate (ALE). NP were subsequently characterised for their chemical-physical properties, biocompatibility, and the ability to inhibit osteoclast-mediated bone resorption, and then loaded with DXR. The effectiveness of NP-loaded DXR was investigated through in vitro and in vivo experiments, and compared to that of free DXR. For the in vitro analysis, six human cell lines were used as a representative panel of bone tumors, including breast and renal adenocarcinoma, osteosarcoma and neuroblastoma. The in vitro uptake and the inhibition of tumor cell proliferation were verified. To analyse the in vivo activity of NP-loaded DXR, osteolytic bone metastases were induced through the intratibial inoculation in BALB/c-nu/nu mice of a human breast cancer cell line, followed by the intraperitoneal administration of the free or NP-loaded DXR. In vitro, aAll of the cell lines were able to uptake both free and NP-loaded drug, and their proliferation was inhibited up to 80% after incubation either with free or NP-loaded DXR. In addition, in vivo experiments showed that NP-loaded DXR were also able to reduce the incidence of bone metastases, not only in comparison with untreated mice, but also with free DXR-treated mice. In conclusion, this research demonstrated an improvement in the therapeutic effect of the antineoplastic drug DXR, when loaded to bone-targeted NP conjugated with ALE. Osteotropic PLGA-ALE NP are suitable to be loaded with DXR and offer as a valuable tool for a tissue specific treatment of skeletal metastases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bone metastases are responsible for different clinical complications defined as skeletal-related events (SREs) such as pathologic fractures, spinal cord compression, hypercalcaemia, bone marrow infiltration and severe bone pain requiring palliative radiotherapy. The general aim of these three years research period was to improve the management of patients with bone metastases through two different approaches of translational research. Firstly in vitro preclinical tests were conducted on breast cancer cells and on indirect co-colture of cancer cells and osteoclasts to evaluate bone targeted therapy singly and in combination with conventional chemotherapy. The study suggests that zoledronic acid has an antitumor activity in breast cancer cell lines. Its mechanism of action involves the decrease of RAS and RHO, as in osteoclasts. Repeated treatment enhances antitumor activity compared to non-repeated treatment. Furthermore the combination Zoledronic Acid + Cisplatin induced a high antitumoral activity in the two triple-negative lines MDA-MB-231 and BRC-230. The p21, pMAPK and m-TOR pathways were regulated by this combined treatment, particularly at lower Cisplatin doses. A co-colture system to test the activity of bone-targeted molecules on monocytes-breast conditioned by breast cancer cells was also developed. Another important criticism of the treatment of breast cancer patients, is the selection of patients who will benefit of bone targeted therapy in the adjuvant setting. A retrospective case-control study on breast cancer patients to find new predictive markers of bone metastases in the primary tumors was performed. Eight markers were evaluated and TFF1 and CXCR4 were found to discriminate between patients with relapse to bone respect to patients with no evidence of disease. In particular TFF1 was the most accurate marker reaching a sensitivity of 63% and a specificity of 79%. This marker could be a useful tool for clinicians to select patients who could benefit for bone targeted therapy in adjuvant setting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ribosome-inactivating proteins (RIPs) are a family of plant toxic enzymes that permanently damage ribosomes and possibly other cellular substrates, thus causing cell death involving different and still not completely understood pathways. The high cytotoxic activity showed by many RIPs makes them ideal candidates for the production of immunotoxins (ITs), chimeric proteins designed for the selective elimination of unwanted or malignant cells. Saporin-S6, a type 1 RIP extracted from Saponaria officinalis L. seeds, has been extensively employed to construct anticancer conjugates because of its high enzymatic activity, stability and resistance to conjugation procedures, resulting in the efficient killing of target cells. Here we investigated the anticancer properties of two saporin-based ITs, anti-CD20 RTX/S6 and anti-CD22 OM124/S6, designed for the experimental treatment of B-cell NHLs. Both ITs showed high cytotoxicity towards CD20-positive B-cells, and their antitumor efficacy was enhanced synergistically by a combined treatment with proteasome inhibitors or fludarabine. Furthermore, the two ITs showed differencies in potency and ability to activate effector caspases, and a different behavior in the presence of the ROS scavenger catalase. Taken together, these results suggest that the different carriers employed to target saporin might influence saporin intracellular routing and saporin-induced cell death mechanisms. We also investigated the early cellular response to stenodactylin, a recently discovered highly toxic type 2 RIP representing an interesting candidate for the design and production of a new IT for the experimental treatment of cancer.