4 resultados para Zebrafish

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the previous 10 years, global R&D expenditure in the pharmaceuticals and biotechnology sector has steadily increased, without a corresponding increase in output of new medicines. To address this situation, the biopharmaceutical industry's greatest need is to predict the failures at the earliest possible stage of the drug development process. A major key to reducing failures in drug screenings is the development and use of preclinical models that are more predictive of efficacy and safety in clinical trials. Further, relevant animal models are needed to allow a wider testing of novel hypotheses. Key to this is the developing, refining, and validating of complex animal models that directly link therapeutic targets to the phenotype of disease, allowing earlier prediction of human response to medicines and identification of safety biomarkers. Morehover, well-designed animal studies are essential to bridge the gap between test in cell cultures and people. Zebrafish is emerging, complementary to other models, as a powerful system for cancer studies and drugs discovery. We aim to investigate this research area designing a new preclinical cancer model based on the in vivo imaging of zebrafish embryogenesis. Technological advances in imaging have made it feasible to acquire nondestructive in vivo images of fluorescently labeled structures, such as cell nuclei and membranes, throughout early Zebrafishsh embryogenesis. This In vivo image-based investigation provides measurements for a large number of features at cellular level and events including nuclei movements, cells counting, and mitosis detection, thereby enabling the estimation of more significant parameters such as proliferation rate, highly relevant for investigating anticancer drug effects. In this work, we designed a standardized procedure for accessing drug activity at the cellular level in live zebrafish embryos. The procedure includes methodologies and tools that combine imaging and fully automated measurements of embryonic cell proliferation rate. We achieved proliferation rate estimation through the automatic classification and density measurement of epithelial enveloping layer and deep layer cells. Automatic embryonic cells classification provides the bases to measure the variability of relevant parameters, such as cell density, in different classes of cells and is finalized to the estimation of efficacy and selectivity of anticancer drugs. Through these methodologies we were able to evaluate and to measure in vivo the therapeutic potential and overall toxicity of Dbait and Irinotecan anticancer molecules. Results achieved on these anticancer molecules are presented and discussed; furthermore, extensive accuracy measurements are provided to investigate the robustness of the proposed procedure. Altogether, these observations indicate that zebrafish embryo can be a useful and cost-effective alternative to some mammalian models for the preclinical test of anticancer drugs and it might also provides, in the near future, opportunities to accelerate the process of drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

9-hydroxystearic acid (9-HSA) belongs to a class of lipid peroxidation products identified in several human and murine cell lines. These products are greatly diminished in tumors compared to normal tissues and their amount is inversely correlated with the malignancy of the tumor. 9-HSA activity has been tested in cancer cell lines, where it showed to act as a histone deacetylase 1 (HDAC1) inhibitor. In particular, in a colon cancer cell line (HT29), its administration resulted in an inhibition of proliferation together with an induction of differentiation. In this thesis the effect of (R)-9-hydroxystearic acid has been tested in vivo on cell proliferation and differentiation processes, in the early stages of zebrafish development. The final aim of this work was to elucidate the role of (R)-9-HSA in the control of cell differentiation and proliferation during normal development, in order to better understand its molecular control of cancerogenesis. The molecule has been administered via injection in the yolk of zebrafish embryos. The analysis of the histone acetylation pattern showed a hyperacetilation of histone H4 after treatment with the molecule, as detectable in HDAC1 mutants. (R)-9-HSA was also demonstrated to interfere with the signaling pathways that regulate proliferation and differentiation in zebrafish retina and hindbrain. This resulted in a reduction of proliferation in the hindbrain at 24 hours post injection (hpi), and in a hyperproliferation at 48 and 72 hpi in the retina, with a concomitant inhibition of differentiation. Finally, (R)-9-HSA effects were evident on proliferation of stem cell located in the ciliary marginal zone (CMZ) of the retina. The presence of ROS and 4-hydroxynoneal in the CMZ of wild-type embryos supports the hypothesis that oxidative stress could regulate stem cells fate in zebrafish retina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some fundamental biological processes such as embryonic development have been preserved during evolution and are common to species belonging to different phylogenetic positions, but are nowadays largely unknown. The understanding of cell morphodynamics leading to the formation of organized spatial distribution of cells such as tissues and organs can be achieved through the reconstruction of cells shape and position during the development of a live animal embryo. We design in this work a chain of image processing methods to automatically segment and track cells nuclei and membranes during the development of a zebrafish embryo, which has been largely validates as model organism to understand vertebrate development, gene function and healingrepair mechanisms in vertebrates. The embryo is previously labeled through the ubiquitous expression of fluorescent proteins addressed to cells nuclei and membranes, and temporal sequences of volumetric images are acquired with laser scanning microscopy. Cells position is detected by processing nuclei images either through the generalized form of the Hough transform or identifying nuclei position with local maxima after a smoothing preprocessing step. Membranes and nuclei shapes are reconstructed by using PDEs based variational techniques such as the Subjective Surfaces and the Chan Vese method. Cells tracking is performed by combining informations previously detected on cells shape and position with biological regularization constraints. Our results are manually validated and reconstruct the formation of zebrafish brain at 7-8 somite stage with all the cells tracked starting from late sphere stage with less than 2% error for at least 6 hours. Our reconstruction opens the way to a systematic investigation of cellular behaviors, of clonal origin and clonal complexity of brain organs, as well as the contribution of cell proliferation modes and cell movements to the formation of local patterns and morphogenetic fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduzione. Le cellule mesenchimali derivate dal tessuto adiposo (hASC) rappresentano un importante strumento per la terapia cellulare, in quanto derivano da un tessuto adulto abbondante e facilmente reperibile. Con il dispositivo medico Lipogems l’isolamento di tali cellule è eseguito esclusivamente mediante sollecitazioni meccaniche. Il prodotto ottenuto è quindi minimamente manipolato e subito utilizzabile. Ad oggi, il condizionamento pro-differenziativo delle staminali è per lo più attuato mediante molecole di sintesi. Tuttavia, altri fattori possono modulare la fisiologia cellulare, come gli stimoli fisici e molecole naturali. Onde elettromagnetiche hanno indotto in modelli cellulari staminali l’espressione di alcuni marcatori di differenziamento e, in cellule adulte, una riprogrammazione, mentre estratti embrionali di Zebrafish sono risultati antiproliferativi sia in vitro che in vivo. Metodi. La ricerca di nuove strategie differenziative sia di natura fisica che molecolare, nel particolare onde acustiche ed estratti embrionali di Zebrafish, è stata condotta utilizzando come modello cellulare le hASC isolate con Lipogems. Onde acustiche sono state somministrate mediante l’utilizzo di due apparati di trasduzione, un generatore di onde meccaniche e il Cell Exciter . I trattamenti con gli estratti embrionali sono stati effettuati utilizzando diverse concentrazioni e diversi tempi sperimentali. Gli effetti sull’espressione dei marcatori di staminalità e differenziamento relativi ai trattamenti sono stati saggiati in RT-PCR quantitativa relativa e/o in qPCR. Per i trattamenti di tipo molecolare è stata valutata anche la proliferazione. Risultati e conclusioni. La meta-analisi dei dati delle colture di controllo mostra la stabilità d’espressione genica del modello. I trattamenti con i suoni inducono variazioni dell’espressione genica, suggerendo un ruolo regolatorio di tali stimoli, in particolare del processo di commitment cardiovascolare. Due degli estratti embrionali di Zebrafish testati inibiscono la proliferazione alle 72 ore dalla somministrazione. L’analisi d’espressione associata ai trattamenti antiproliferativi suggerisce che tale effetto abbia basi molecolari simili ai processi di differenziamento.