4 resultados para Tissue culture

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue engineering is a discipline that aims at regenerating damaged biological tissues by using a cell-construct engineered in vitro made of cells grown into a porous 3D scaffold. The role of the scaffold is to guide cell growth and differentiation by acting as a bioresorbable temporary substrate that will be eventually replaced by new tissue produced by cells. As a matter or fact, the obtainment of a successful engineered tissue requires a multidisciplinary approach that must integrate the basic principles of biology, engineering and material science. The present Ph.D. thesis aimed at developing and characterizing innovative polymeric bioresorbable scaffolds made of hydrolysable polyesters. The potentialities of both commercial polyesters (i.e. poly-e-caprolactone, polylactide and some lactide copolymers) and of non-commercial polyesters (i.e. poly-w-pentadecalactone and some of its copolymers) were explored and discussed. Two techniques were employed to fabricate scaffolds: supercritical carbon dioxide (scCO2) foaming and electrospinning (ES). The former is a powerful technology that enables to produce 3D microporous foams by avoiding the use of solvents that can be toxic to mammalian cells. The scCO2 process, which is commonly applied to amorphous polymers, was successfully modified to foam a highly crystalline poly(w-pentadecalactone-co-e-caprolactone) copolymer and the effect of process parameters on scaffold morphology and thermo-mechanical properties was investigated. In the course of the present research activity, sub-micrometric fibrous non-woven meshes were produced using ES technology. Electrospun materials are considered highly promising scaffolds because they resemble the 3D organization of native extra cellular matrix. A careful control of process parameters allowed to fabricate defect-free fibres with diameters ranging from hundreds of nanometers to several microns, having either smooth or porous surface. Moreover, versatility of ES technology enabled to produce electrospun scaffolds from different polyesters as well as “composite” non-woven meshes by concomitantly electrospinning different fibres in terms of both fibre morphology and polymer material. The 3D-architecture of the electrospun scaffolds fabricated in this research was controlled in terms of mutual fibre orientation by properly modifying the instrumental apparatus. This aspect is particularly interesting since the micro/nano-architecture of the scaffold is known to affect cell behaviour. Since last generation scaffolds are expected to induce specific cell response, the present research activity also explored the possibility to produce electrospun scaffolds bioactive towards cells. Bio-functionalized substrates were obtained by loading polymer fibres with growth factors (i.e. biomolecules that elicit specific cell behaviour) and it was demonstrated that, despite the high voltages applied during electrospinning, the growth factor retains its biological activity once released from the fibres upon contact with cell culture medium. A second fuctionalization approach aiming, at a final stage, at controlling cell adhesion on electrospun scaffolds, consisted in covering fibre surface with highly hydrophilic polymer brushes of glycerol monomethacrylate synthesized by Atom Transfer Radical Polymerization. Future investigations are going to exploit the hydroxyl groups of the polymer brushes for functionalizing the fibre surface with desired biomolecules. Electrospun scaffolds were employed in cell culture experiments performed in collaboration with biochemical laboratories aimed at evaluating the biocompatibility of new electrospun polymers and at investigating the effect of fibre orientation on cell behaviour. Moreover, at a preliminary stage, electrospun scaffolds were also cultured with tumour mammalian cells for developing in vitro tumour models aimed at better understanding the role of natural ECM on tumour malignity in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the regenerative potential of alternative sources of stem cells, derived from human dental pulp (hDPSCs) and amniotic fluid (hAFSCs) and, specifically, to evaluate their capability to be committed towards osteogenic and myogenic lineages, for the eventual applicability of these stem cells to translational strategies in regenerative medicine of bone and skeletal muscle tissues. The in vitro bone production by stem cells may represent a radical breakthrough in the treatment of pathologies and traumas characterized by critical bone mass defects, with no medical or surgical solution. Human DPSCs and AFSCs were seeded and pre-differentiated on different scaffolds to test their capability to subsequently reach the osteogenic differentiation in vivo, in order to recover critical size bone defects. Fibroin scaffold resulted to be the best scaffold promoting mature bone formation and defect correction when combined to both hDPSCs and hAFSCs. This study also described a culture condition that might allow human DPSCs to be used for human cell therapy in compliance with good manufacturing practices (GMPs): the use of human serum (HS) promoted the expansion and the osteogenic differentiation of hDPSCs in vitro and, furthermore, allowed pre-differentiated hDPSCs to regenerate critical size bone defects in vivo. This thesis also showed that hDPSCs and hAFSCs can be differentiated towards the myogenic lineage in vitro, either when co-cultured with murine myoblasts and when differentiated alone after DNA demethylation treatment. Interestingly, when injected into dystrophic muscles of SCID/mdx mice - animal model of Duchenne Muscular Dystrophy (DMD) - hDPSCs and hAFSCs pre-differentiated after demethylating treatment were able to regenerate the skeletal muscle tissue and, particularly, to restore dystrophin expression. These observations suggest that human DPSCs and AFSCs might be eventually applied to translational strategies, in order to enhance the repair of injured skeletal muscles in DMD patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD Thesis is focused on the development of fibrous polymeric scaffolds for tissue engineering applications and on the improvement of scaffold biomimetic properties. Scaffolds were fabricated by electrospinning, which allows to obtain scaffolds made of polymeric micro or nanofibers. Biomimetism was enhanced by following two approaches: (1) the use of natural biopolymers, and (2) the modification of the fibers surface chemistry. Gelatin was chosen for its bioactive properties and cellular affinity, however it lacks in mechanical properties. This problem was overcome by adding poly(lactic acid) to the scaffold through co-electrospinning and mechanical properties of the composite constructs were assessed. Gelatin effectively improves cell growth and viability and worth noting, composite scaffolds of gelatin and poly(lactic acid) were more effective than a plain gelatin scaffold. Scaffolds made of pure collagen fibers were fabricated. Modification of collagen triple helix structure in electrospun collagen fibers was studied. Mechanical properties were evaluated before and after crosslinking. The crosslinking procedure was developed and optimized by using - for the first time on electrospun collagen fibers - the crosslinking reactant 1,4-butanediol diglycidyl ether, with good results in terms of fibers stabilization. Cell culture experiments showed good results in term of cell adhesion and morphology. The fiber surface chemistry of electrospun poly(lactic acid) scaffold was modified by plasma treatment. Plasma did not affect thermal and mechanical properties of the scaffold, while it greatly increased its hydrophilicity by the introduction of carboxyl groups at the fiber surface. This fiber functionalization enhanced the fibroblast cell viability and spreading. Surface modifications by chemical reactions were conducted on electrospun scaffolds made of a polysophorolipid. The aim was to introduce a biomolecule at the fiber surface. By developing a series of chemical reactions, one oligopeptide every three repeating units of polysophorolipid was grafted at the surface of electrospun fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional cell culture models have limitations in extrapolating functional mechanisms that underlie strategies of microbial virulence. Indeed during the infection the pathogens adapt to different tissue-specific environmental factors. The development of in vitro models resembling human tissue physiology might allow the replacement of inaccurate or aberrant animal models. Three-dimensional (3D) cell culture systems are more reliable and more predictive models that can be used for the meaningful dissection of host–pathogen interactions. The lung and gut mucosae often represent the first site of exposure to pathogens and provide a physical barrier against their entry. Within this context, the tracheobronchial and small intestine tract were modelled by tissue engineering approach. The main work was focused on the development and the extensive characterization of a human organotypic airway model, based on a mechanically supported co-culture of normal primary cells. The regained morphological features, the retrieved environmental factors and the presence of specific epithelial subsets resembled the native tissue organization. In addition, the respiratory model enabled the modular insertion of interesting cell types, such as innate immune cells or multipotent stromal cells, showing a functional ability to release pertinent cytokines differentially. Furthermore this model responded imitating known events occurring during the infection by Non-typeable H. influenzae. Epithelial organoid models, mimicking the small intestine tract, were used for a different explorative analysis of tissue-toxicity. Further experiments led to detection of a cell population targeted by C. difficile Toxin A and suggested a role in the impairment of the epithelial homeostasis by the bacterial virulence machinery. The described cell-centered strategy can afford critical insights in the evaluation of the host defence and pathogenic mechanisms. The application of these two models may provide an informing step that more coherently defines relevant molecular interactions happening during the infection.