4 resultados para Surface treatment

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work studies the impact of two traditional Romanian treatments, Red Petroleum and Propolis, in terms of real efficiency and consequence on the wooden artifacts. The application of these solutions is still a widely adopted and popular technique in preservative conservation but the impact of these solutions is not well known. It is important to know the effect of treatments on chemical-physical and structural characteristics of the artifacts, not only for understanding the influence on present conditions but also for foreseeing the future behavior. These treatments with Romanian traditional products are compared with a commercial antifungal product, Biotin R, which is utilized as reference to control the effectiveness of Red Petroleum and Propolis. Red Petroleum and Propolis are not active against mould while Biotin R is very active. Mould attack is mostly concentrated in the painted layer, where the tempera, containing glue and egg, enhance nutrition availability for moulds. Biotin R, even if is not a real insecticide but a fungicide, was the most active product against insect attack of the three products, followed by Red Petroleum, Propolis and untreated reference. As for colour, it did not change so much after the application of Red Petroleum and Biotin R and the colour difference was almost not perceptible. On the contrary, Propolis affected the colour a lot. During the exposure at different RH, the colour changes significantly at 100% RH at equilibrium and this is mainly due to the mould attack. Red Petroleum penetrates deeply into wood, while Propolis does not penetrate and remains only on the surface. However, Red Petroleum does not interact chemically with wood substance and it is easy volatilized in oven-dry condition. On the contrary Propolis interacts chemically with wood substance and hardly volatilized, even in oven-dry condition and consequently Propolis remains where it penetrated, mostly on the surface. Treatment by immersion has impact on wood physical parameters while treatment by brushing does not have significant impact. Especially Red Petroleum has an apparent impact on moisture content (MC) due to the penetration of solution, while Propolis does not penetrate so much and remains only on surface therefore Propolis does not have so much impact as Red Petroleum. However, if the weight of the solution penetrated in wood is eliminated, there is not significant difference in MC between treated and untreated samples. Considering physical parameters, dimensional stability is an important parameter. The variation of wood moisture content causes shrinkages/swelling of the wood that polychrome layer can only partially follow. The dimension of wooden supports varied under different moisture conditioning; the painted layer cannot completely follow this deformation, and consequently a degradation and deterioration caused by detachment, occurs. That detachment affects the polychrome stratification of the panel painting and eventually the connections between the different layer compositions of the panel painting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Articular cartilage lesions, with their inherent limited healing potential, are hard to treat and remain a challenging problem for orthopedic surgeons. Despite the development of several treatment strategies, the real potential of each procedure in terms of clinical benefit and effects on the joint degeneration processes is not clear. Aim of this PhD project was to evaluate the results, both in terms of clinical and imaging improvement, of new promising procedures developed to address the challenging cartilage pathology. Several studies have been followed in parallel and completed over the 3-year PhD, and are reported in detail in the following pages. In particular, the studies have been focused on the evaluation of the treatment indications of a scaffold based autologous chondrocyte implantation procedure, documenting its results for the classic indication of focal traumatic lesions, as well as its use for the treatment of more challenging patients, older, with degenerative lesions, or even as salvage procedure for more advanced stages of articular degeneration. The second field of study involved the analysis of the results obtained treating lesions of the articular surface with a new biomimetic osteochondral scaffold, which showed promise for the treatment of defects where the entire osteochondral unit is involved. Finally, a new minimally invasive procedure based on the use of growth factors derived from autologous platelets has been explored, showing results and underlining indicatios for the treatment of cartilage lesions and different stages of joint degeneration. These studies shed some light on the potential of the evaluated procedures, underlining good results as well as limits, they give some indications on the most appropriate candidates for their application, and document the current knowledge on cartilage treatment procedures suggesting the limitations that need to be addressed by future studies to improve the management of cartilage lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decades noble metal nanoparticles (NPs) arose as one of the most powerful tools for applications in nanomedicine field and cancer treatment. Glioblastoma multiforme (GBM), in particular, is one of the most aggressive malignant brain tumors that nowadays still presents a dramatic scenario concerning median survival. Gold nanorods (GNRs) and silver nanoparticles (AgNPs) could find applications such as diagnostic imaging, hyperthermia and glioblastoma therapy. During these three years, both GNRs and AgNPs were synthesized with the “salt reduction” method and, through a novel double phase transfer process, using specifically designed thiol-based ligands, lipophilic GNRs and AgNPs were obtained and separately entrapped into biocompatible and biodegradable PEG-based polymeric nanoparticles (PNPs) suitable for drug delivery within the body. Moreover, a synergistic effect of AgNPs with the Alisertib drug, were investigated thanks to the simultaneous entrapment of these two moieties into PNPs. In addition, Chlorotoxin (Cltx), a peptide that specifically recognize brain cancer cells, was conjugated onto the external surface of PNPs. The so-obtained novel nanosystems were evaluated for in vitro and in vivo applications against glioblastoma multiforme. In particular, for GNRs-PNPs, their safety, their suitability as optoacoustic contrast agents, their selective laser-induced cells death and finally, a high tumor retention were all demonstrated. Concerning AgNPs-PNPs, promising tumor toxicity and a strong synergistic effect with Alisertib was observed (IC50 10 nM), as well as good in vivo biodistribution, high tumor uptake and significative tumor reduction in tumor bearing mice. Finally, the two nanostructures were linked together, through an organic framework, exploiting the click chemistry azido-alkyne Huisgen cycloaddition, between two ligands previously attached to the NPs surface; this multifunctional complex nanosystem was successfully entrapped into PNPs with nanoparticles’ properties maintenance, obtaining in this way a powerful and promising tool for cancer fight and defeat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents results from experimental investigations of several different atmospheric pressure plasmas applications, such as Metal Inert Gas (MIG) welding and Plasma Arc Cutting (PAC) and Welding (PAW) sources, as well as Inductively Coupled Plasma (ICP) torches. The main diagnostic tool that has been used is High Speed Imaging (HSI), often assisted by Schlieren imaging to analyse non-visible phenomena. Furthermore, starting from thermo-fluid-dynamic models developed by the University of Bologna group, such plasma processes have been studied also with new advanced models, focusing for instance on the interaction between a melting metal wire and a plasma, or considering non-equilibrium phenomena for diagnostics of plasma arcs. Additionally, the experimental diagnostic tools that have been developed for industrial thermal plasmas have been used also for the characterization of innovative low temperature atmospheric pressure non equilibrium plasmas, such as dielectric barrier discharges (DBD) and Plasma Jets. These sources are controlled by few kV voltage pulses with pulse rise time of few nanoseconds to avoid the formation of a plasma arc, with interesting applications in surface functionalization of thermosensitive materials. In order to investigate also bio-medical applications of thermal plasma, a self-developed quenching device has been connected to an ICP torch. Such device has allowed inactivation of several kinds of bacteria spread on petri dishes, by keeping the substrate temperature lower than 40 degrees, which is a strict requirement in order to allow the treatment of living tissues.