4 resultados para RNA viral

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As proviral human immunodeficiency virus type 1 (HIV-1) DNA can replenish and revive viral infection upon attivation, its analysis, in addition to RNA viral load, could be considered a useful marker during the follow-up of infected individuals, to evaluate reservoir status, especially in HAART-treated patients when RNA viral load is undetectable by current techniques and the antiretroviral efficacy of new, more potent therapeutic regimens. Standardized methods for the measurement of the two most significant forms of proviral DNA, total and non-integrated, are currently lacking, despite the widespread of molecular biology techniques. In this study, total and 2-LTR HIV-1 DNA proviral load, in addition to RNA viral load, CD4 cell count and serological parameters, were determined by quantitative analysis in peripheral blood mononuclear cells (PBMC) in naïve or subsequently HAART-treated patients with acute HIV-1 infection in order to establish the role of these two DNA proviral forms in the course of HIV infection. The study demonstrated that HAART-treated individuals show a significant decrease in both total and 2-LTR circular HIV-1 DNA proviral load compared with naïve patients: these findings confirm that HIV-1 reservoir decay correlates with therapeutic effectiveness. The persistence of small amounts of 2-LTR HIV-1 DNA form, which is considered to be a molecular determinant of infectivity, in PBMC from some patients demonstrates that a small rate of replication is retained even when HAART is substantially effective: HAART could not eradicate completely the infection because HIV is able to replicate at low levels. Plasma-based viral RNA assays may fail to demonstrate the full extent of viral activity. In conclusion, the availability of a new standardized assay to determine DNA proviral load will be important in assessing the true extent of virological suppression suggesting that its quantification may be an important parameter in monitoring HIV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite new methods and combined strategies, conventional cancer chemotherapy still lacks specificity and induces drug resistance. Gene therapy can offer the potential to obtain the success in the clinical treatment of cancer and this can be achieved by replacing mutated tumour suppressor genes, inhibiting gene transcription, introducing new genes encoding for therapeutic products, or specifically silencing any given target gene. Concerning gene silencing, attention has recently shifted onto the RNA interference (RNAi) phenomenon. Gene silencing mediated by RNAi machinery is based on short RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), that are fully o partially homologous to the mRNA of the genes being silenced, respectively. On one hand, synthetic siRNAs appear as an important research tool to understand the function of a gene and the prospect of using siRNAs as potent and specific inhibitors of any target gene provides a new therapeutical approach for many untreatable diseases, particularly cancer. On the other hand, the discovery of the gene regulatory pathways mediated by miRNAs, offered to the research community new important perspectives for the comprehension of the physiological and, above all, the pathological mechanisms underlying the gene regulation. Indeed, changes in miRNAs expression have been identified in several types of neoplasia and it has also been proposed that the overexpression of genes in cancer cells may be due to the disruption of a control network in which relevant miRNA are implicated. For these reasons, I focused my research on a possible link between RNAi and the enzyme cyclooxygenase-2 (COX-2) in the field of colorectal cancer (CRC), since it has been established that the transition adenoma-adenocarcinoma and the progression of CRC depend on aberrant constitutive expression of COX-2 gene. In fact, overexpressed COX-2 is involved in the block of apoptosis, the stimulation of tumor-angiogenesis and promotes cell invasion, tumour growth and metastatization. On the basis of data reported in the literature, the first aim of my research was to develop an innovative and effective tool, based on the RNAi mechanism, able to silence strongly and specifically COX-2 expression in human colorectal cancer cell lines. In this study, I firstly show that an siRNA sequence directed against COX-2 mRNA (siCOX-2), potently downregulated COX-2 gene expression in human umbilical vein endothelial cells (HUVEC) and inhibited PMA-induced angiogenesis in vitro in a specific, non-toxic manner. Moreover, I found that the insertion of a specific cassette carrying anti-COX-2 shRNA sequence (shCOX-2, the precursor of siCOX-2 previously tested) into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT-29) without activating any interferon response. Phenotypically, COX-2 deficient HT-29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, results reported here indicate an easy-to-use, powerful and high selective virus-based method to knockdown COX-2 gene in a stable and long-lasting manner, in colon cancer cells. Furthermore, they open up the possibility of an in vivo application of this anti-COX-2 retroviral vector, as therapeutic agent for human cancers overexpressing COX-2. In order to improve the tumour selectivity, pSUPER.retro vector was modified for the shCOX-2 expression cassette. The aim was to obtain a strong, specific transcription of shCOX-2 followed by COX-2 silencing mediated by siCOX-2 only in cancer cells. For this reason, H1 promoter in basic pSUPER.retro vector [pS(H1)] was substituted with the human Cox-2 promoter [pS(COX2)] and with a promoter containing repeated copies of the TCF binding element (TBE) [pS(TBE)]. These promoters were choosen because they are partculary activated in colon cancer cells. COX-2 was effectively silenced in HT-29 and HCA-7 colon cancer cells by using enhanced pS(COX2) and pS(TBE) vectors. In particular, an higher siCOX-2 production followed by a stronger inhibition of Cox-2 gene were achieved by using pS(TBE) vector, that represents not only the most effective, but also the most specific system to downregulate COX-2 in colon cancer cells. Because of the many limits that a retroviral therapy could have in a possible in vivo treatment of CRC, the next goal was to render the enhanced RNAi-mediate COX-2 silencing more suitable for this kind of application. Xiang and et al. (2006) demonstrated that it is possible to induce RNAi in mammalian cells after infection with engineered E. Coli strains expressing Inv and HlyA genes, which encode for two bacterial factors needed for successful transfer of shRNA in mammalian cells. This system, called “trans-kingdom” RNAi (tkRNAi) could represent an optimal approach for the treatment of colorectal cancer, since E. Coli in normally resident in human intestinal flora and could easily vehicled to the tumor tissue. For this reason, I tested the improved COX-2 silencing mediated by pS(COX2) and pS(TBE) vectors by using tkRNAi system. Results obtained in HT-29 and HCA-7 cell lines were in high agreement with data previously collected after the transfection of pS(COX2) and pS(TBE) vectors in the same cell lines. These findings suggest that tkRNAi system for COX-2 silencing, in particular mediated by pS(TBE) vector, could represent a promising tool for the treatment of colorectal cancer. Flanking the studies addressed to the setting-up of a RNAi-mediated therapeutical strategy, I proposed to get ahead with the comprehension of new molecular basis of human colorectal cancer. In particular, it is known that components of the miRNA/RNAi pathway may be altered during the progressive development of colorectal cancer (CRC), and it has been already demonstrated that some miRNAs work as tumor suppressors or oncomiRs in colon cancer. Thus, my hypothesis was that overexpressed COX-2 protein in colon cancer could be the result of decreased levels of one or more tumor suppressor miRNAs. In this thesis, I clearly show an inverse correlation between COX-2 expression and the human miR- 101(1) levels in colon cancer cell lines, tissues and metastases. I also demonstrate that the in vitro modulating of miR-101(1) expression in colon cancer cell lines leads to significant variations in COX-2 expression, and this phenomenon is based on a direct interaction between miR-101(1) and COX-2 mRNA. Moreover, I started to investigate miR-101(1) regulation in the hypoxic environment since adaptation to hypoxia is critical for tumor cell growth and survival and it is known that COX-2 can be induced directly by hypoxia-inducible factor 1 (HIF-1). Surprisingly, I observed that COX-2 overexpression induced by hypoxia is always coupled to a significant decrease of miR-101(1) levels in colon cancer cell lines, suggesting that miR-101(1) regulation could be involved in the adaption of cancer cells to the hypoxic environment that strongly characterize CRC tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’ampliamento dello spettro d’ospite è strettamente connesso al processo evolutivo a cui i virus sono assoggettati e rappresenta una notevole sfida alla loro capacità di adattarsi. L’attitudine a superare le barriere di specie è conseguente alla costante e relativamente rapida evoluzione che caratterizza i virus; allo stesso tempo, la forza selettiva esercitata dal nuovo ospite rappresenterà un ulteriore stimolo per le capacità adattative del virus. Ad oggi, i meccanismi genetici ed evolutivi responsabili del salto di specie virale, cioè la trasmissione di un virus da un ospite tradizionale ad uno precedentemente resistente all’infezione, sono parzialmente sconosciuti. Nel seguente lavoro verranno presentati gli studi effettuati sulle dinamiche evolutive caratterizzanti virus a RNA e a DNA in cui si sono osservate variazioni dello spettro d’ospite. Gli studi hanno riguardato i coronavirus, con particolare riferimento al ruolo svolto dai pipistrelli nell’evoluzione dei coronavirus SARS-correlati, e l’importanza del gatto nell’evoluzione dei parvovirus dei carnivori. Nella prima sezione saranno mostrate le correlazioni genetiche dei coronavirus identificati in Italia nei pipistrelli appartenenti alla specie Rhinolophus ferrumequinum con i ceppi europei e del resto del mondo, allo scopo di chiarire l’origine evolutiva dei coronavirus dei pipistrelli correlati al virus della SARS (Bat-SARS-like CoV) europei, gli eventi migratori che hanno caratterizzato la loro diffusione nel continente e le potenziali ripercussioni sulla salute pubblica. Nella seconda sezione saranno evidenziate le caratteristiche molecolari dei ceppi di parvovirus circolanti nella popolazione felina, valutandone la diversità di sequenza e la complessità genetica, allo scopo di ottenere importanti informazioni in merito all’evoluzione del virus e alle interazioni tra il parvovirus e l’ospite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in aquaculture operations worldwide has provided new opportunities for the transmission of aquatic viruses. The occurrence of viral diseases remains a significant limiting factor in aquaculture production and for the sustainability. The ability to identify quickly the presence/absence of a pathogenic organism in fish would have significant advantages for the aquaculture systems. Several molecular methods have found successful application in fish pathology both for confirmatory diagnosis of overt diseases and for detection of asymptomatic infections. However, a lot of different variants occur among fish host species and virus strains and consequently specific methods need to be developed and optimized for each pathogen and often also for each host species. The first chapter of this PhD thesis presents a complete description of the major viruses that infect fish and provides a relevant information regarding the most common methods and emerging technologies for the molecular diagnosis of viral diseases of fish. The development and application of a real time PCR assay for the detection and quantification of lymphocystivirus was described in the second chapter. It showed to be highly sensitive, specific, reproducible and versatile for the detection and quantitation of lymphocystivirus. The use of this technique can find multiple application such as asymptomatic carrier detection or pathogenesis studies of different LCDV strains. The third chapter, a multiplex RT-PCR (mRT-PCR) assay was developed for the simultaneous detection of viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN), infectious pancreatic necrosis (IPN) and sleeping disease (SD) in a single assay. This method was able to efficiently detect the viral RNA in tissue samples, showing the presence of single infections and co-infections in rainbow trout samples. The mRT-PCR method was revealed to be an accurate and fast method to support traditional diagnostic techniques in the diagnosis of major viral diseases of rainbow trout.