13 resultados para Naturally occurring

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyphenols, including flavonoids and stilbenes, are an essential part of human diet and constitute one of the most abundant and ubiquitous group of plant secondary metabolites. The level of these compounds is inducible by stress or fungal attack, so attempts are being made to identify likely biotic and abiotic elicitors and to better understand the underlying mechanism. Resveratrol (3,5,4’-trihydroxystilbene), which belongs to the stilbene family, is a naturally occurring polyphenol, found in several fruits, vegetables and beverages including red wine. It is one of the most important plant polyphenols with proved benefic activity on animal health. In the last two decades, the potential protective effects of resveratrol against cardiovascular and neurodegenerative diseases, as well as the chemopreventive properties against cancer, have been largely investigated. The most important source of polyphenols and in particular resveratrol for human diet is grape (Vitis vinifera). Since stilbenes and flavonoids play a very important role in plant defence responses and enviromental interactions, and their effects on human health seem promising, the aim of the research of this Thesis was to study at different levels the activation and the regulation of their biosynthetic pathways after chitosan treatment. Moreover, the polyphenol production in grape cells and the optimisation of cultural conditions bioreactor scale-up, were also investigated. Cell suspensions were obtained from cv. Barbera (Vitis vinifera L.) petioles and were treated with a biotic elicitor, chitosan (50 μg/mL, dissolved in acetic acid) to promote phenylpropanoid metabolism. Chitosan is a D-glucosamine polymer from fungi cell wall and therefore mimes fungal pathogen attack. Liquid cultures have been monitored for 15 days, measuring cell number, cell viability, pH and grams of fresh weight. The endogenous and released amounts of 7 stilbenes (trans and cis isomers of resveratrol, piceid and resveratroloside, and piceatannol), gallic acid, 6 hydroxycinnamic acids (trans-cinnamic, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acids), 5 catechines (catechin, epicatechin, epigallocatechin-gallate (EGCG), epigallocatechin and epicatechin-gallate) and other 5 flavonoids (chalcon, naringenin, kaempferol, quercetin and rutin) in cells and cultural medium, were measured by HPLC-DAD analysis and total anthocyanins were quantified by spectrophotometric analysis. Chitosan was effective in stimulating trans-resveratrol endogenous accumulation with a sharp peak at day 4 (exceeding acetic acid and water controls by 36% and 63%, respectively), while it did not influence the production of the cis-isomer. Compared to both water and acetic acid controls, chitosan decreased the release of both trans- and cis-resveratrol respect to controls. No effect was shown on the accumulation of single resveratrol mono-glucoside isomers, but considering their total amount, normalized for the relative water control, it was possible to evidence an increase in both accumulation and release of those compounds, in chitosan-treated cells, throughout the culture period and particularly during the second week. Many of the analysed flavonoids and hydroxycinnamic acids were not present or detectable in trace amounts. Catechin, epicatechin and epigallocatechin-gallate (EGCG) were detectable both inside the cells and in the culture media, but chitosan did not affect their amounts. On the contrary, total anthocyanins have been stimulated by chitosan and their level, from day 4 to 14, was about 2-fold higher than in both controls, confirming macroscopic observations that treated suspensions showed an intense brown-red color, from day 3 onwards. These elicitation results suggest that chitosan selectively up-regulates specific biosynthetic pathways, without modifying the general accumulation pattern of other flavonoids. Proteins have been extracted from cells at day 4 of culture (corresponding to the production peak of trans-resveratrol) and separated by bidimensional electrophoresis. The 73 proteins that showed a consistently changed amount between untreated, chitosan and acetic acid (chitosan solvent) treated cells, have been identified by mass spectrometry. Chitosan induced an increase in stilbene synthase (STS, the resveratrol biosynthetic enzyme), chalcone-flavanone isomerase (CHI, that switches the pathway from chalcones to flavones and anthocyanins), pathogenesis-related proteins 10 (PRs10, a large family of defence proteins), and a decrease in many proteins belonging to primary metabolisms. A train of six distinct spots of STS encoded by the same gene and increased by chitosan, was detected on the 2-D gels, and related to the different phosphorylation degree of STS spots. Northern blot analyses have been performed on RNA extracted from cells treated with chitosan and relative controls, using probes for STS, PAL (phenylalanine ammonia lyase, the first enzyme of the biosynthetic pathway), CHS (chalcone synthase, that shares with STS the same precursors), CHI and PR-10. The up-regulation of PAL, CHS and CHI transcript expression levels correlated with the accumulation of anthocyanins. The strong increase of different molecular weight PR-10 mRNAs, correlated with the 11 PR-10 protein spots identified in proteomic analyses. The sudden decrease in trans-resveratrol endogenous accumulation after day 4 of culture, could be simply explained by the diminished resveratrol biosynthetic activity due to the lower amount of biosynthetic enzymes. This might be indirectly demonstrated by northern blot expression analyses, that showed lower levels of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) mRNAs starting from day 4. Other possible explanations could be a resveratrol oxidation process and/or the formation of other different mono-, di-glucosides and resveratrol oligomers such as viniferins. Immunolocalisation experiments performed on grape protoplasts and the subsequent analyses by confocal microscope, showed that STS, and therefore the resveratrol synthetic site, is mostly associated to intracellular membranes close to the cytosolic side of plasma membrane and in a smaller amount is localized in the cytosol. STS seemed not to be present inside vacuole and nucleus. There were no differences in the STS intracellular localisation between the different treatments. Since it was shown that stilbenes are largely released in the culture medium and that STS is a soluble protein, a possible interaction of STS with a plasma membrane transporter responsible for the extrusion of stilbenes in the culture medium, might be hypothesized. Proteomic analyses performed on subcellular fractions identified in the microsomial fraction 5 proteins taking part in channel complexes or associated with channels, that significantly changed their amount after chitosan treatment. In soluble and membrane fractions respectively 3 and 4 STS and 6 and 3 PR-10 have been identified. Proteomic results obtained from subcellular fractions substantially confirmed previous result obtained from total cell protein extracts and added more information about protein localisation and co-localisation. The interesting results obtained on Barbera cell cultures with the aim to increase polyphenol (especially stilbenes) production, have encouraged scale up tests in 1 litre bioreactors. The first trial fermentation was performed in parallel with a normal time-course in 20 mL flasks, showing that the scale-up (bigger volume and different conditions) process influenced in a very relevant way stilbenes production. In order to optimise culture parameters such as medium sucrose amount, fermentation length and inoculum cell concentration, few other fermentations were performed. Chitosan treatments were also performed. The modification of each parameter brought relevant variations in stilbenes and catechins levels, so that the production of a certain compound (or class of compounds) could be hypothetically promoted by modulating one or more culture parameters. For example the catechin yield could be improved by increasing sucrose content and the time of fermentation. The best results in stilbene yield were obtained in a 800 mL fermentation inoculated with 10.8 grams of cells and supplemented with chitosan. The culture was fed with MS medium added with 30 g/L sucrose, 25 μg/mL rifampicin and 50 μg/mL of chitosan, and was maintained at 24°C, stirred by marine impeller at 100 rpm and supplied of air at 0.16 L/min rate. Resveratroloside was the stilbene present in the larger amount, 3-5 times more than resveratrol. Because resveratrol glucosides are similarly active and more stable than free resveratrol, their production using a bioreactor could be a great advantage in an hypothetical industrial process. In my bioreactor tests, stilbenes were mainly released in the culture medium (60-80% of the total) and this fact could be another advantage for industrial applications, because it allows recovering the products directly from the culture medium without stopping the fermentation and/or killing the cells. In my best cultural conditions, it was possible to obtain 3.95 mg/L of stilbenes at day 4 (maximum resveratrol accumulation) and 5.13 mg/L at day 14 (maximum resveratroloside production). In conclusion, chitosan effect in inducing Vitis vinifera defense mechanisms can be related to its ability to increase the intracellular content of a large spectrum of antioxidants, and in particular of resveratrol, its derivates and anthocyanins. Its effect can be observed at transcriptional, proteomic (variation of soluble and membrane protein amounts) and metabolic (polyphenols production) level. The chitosan ability to elicit specific plant matabolisms can be useful to produce large quantities of antioxidant compounds from cell culture in bioreactor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative stress is considered to be of major relevance for a variety of pathological processes. Thus, it is valuable to identify compounds, which might act as antioxidants, i.e. compounds that antagonize the deleterious action of reactive oxygen species (ROS) on biomolecules. The mode of action of these compounds could be either to scavenge ROS directly or to trigger protective mechanisms inside the cell, thereby resulting in improved defense against ROS. Sulforaphane (SF) (1-isothiocyanato-(4R)-(methylsulfinyl)butane) is a naturally occurring cancer chemopreventive agent found as a precursor glucosinolate in Cruciferous vegetables like broccoli. Although SF is not a direct-acting antioxidant, there is substantial evidence that SF acts indirectly to increase the antioxidant capacity of animal cells and their abilities to cope with oxidative stress. Induction of phase 2 enzymes is one means by which SF enhances the cellular antioxidant capacity. Enzymes induced by SF include Glutathione S-transferases (GST) and NAD[P]H:quinone oxidoreductase (NQO1) which can function as protectors against oxidative stress. To protect themselves from oxidative stress, cells are equipped with reducing buffer systems including the GSH and thioredoxin (Trx) reductase. GSH is an important tripeptide thiol which in addition to being the substrate for GSTs maintains the cellular oxidation– reduction balance and protects cells against free radical species. Aim of the first part of this thesis was to investigate the ability of SF to induce the expression and the activity of different phase 2 and antioxidant enzymes (such as GST, GR, GPx, NQO1, TR, SOD, CAT) in an in vitro model of rat cardiomyocytes, and also to define if SF treatment supprts cells in counteracting oxidative stress induced by H2O2 It is well known that acute exhaustive exercise causes significant reactive oxygen species generation that results in oxidative stress, which can induce negative effects on health and well being. In fact, increased oxidative stress and biomarkers (e.g., protein carbonyls, MDA, and 8- hydroxyguanosine) as well as muscle damage biomarkers (e.g. plasmatic Creatine cinase and Lactate dehydrogenase) have been observed after supramaximal sprint exercises, exhaustive longdistance cycling or running as well as resistance-type exercises, both in trained and untrained humans. Markers of oxidative stress also increase in rodents following exhaustive exercise. Moreover, antioxidant enzyme activities and expressions of antioxidant enzymes are known to increase in response to exhaustive exercise in both animal and human tissues. Aim of this project was to evaluate the effect of SF supplementation in counteracting oxidative stress induced by physical activity through its ability to induce phase 2, and antioxidant enzymes in rat muscle. The results show that SF is a nutraceutical compound able to induce the activity of different phase 2 and antioxidant enzymes in both cardiac muscle and skeletal muscle. Thanks to its actions SF is becoming a promising molecule able to prevent cardiovascular damages induced by oxidative stress and muscle damages induced by acute exhaustive exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objects with complex shape and functions have always attracted attention and interest. The morphological diversity and complexity of naturally occurring forms and patterns have been a motivation for humans to copy and adopt ideas from Nature to achieve functional, aesthetic and social value. Biomimetics is addressed to the design and development of new synthetic materials using strategies adopted by living organisms to produce biological materials. In particular, biomineralized tissues are often sophisticate composite materials, in which the components and the interfaces between them have been defined and optimized, and that present unusual and optimal chemical-physical, morphological and mechanical properties. Moreover, biominerals are generally produced by easily traceable raw materials, in aqueous media and at room pressure and temperature, that is through cheap process and materials. Thus, it is not surprising that the idea to mimic those strategies proper of Nature has been employed in several areas of applied sciences, such as for the preparation of liquid crystals, ceramic thin films computer switches and many other advanced materials. On this basis, this PhD thesis is focused on the investigation of the interaction of biologically active ions and molecules with calcium phosphates with the aim to develop new materials for the substitution and repair of skeletal tissue, according to the following lines: I. Modified calcium phosphates. A relevant part of this PhD thesis has been addressed to study the interaction of Strontium with calcium phosphates. It was demonstrated that strontium ion can substitute for calcium into hydroxyapatite, causing appreciable structural and morphological modifications. The detailed structural analysis carried out on the nanocrystals at different strontium content provided new insight into its interaction with the structure of hydroxyapatite. At variance with the behaviour of Sr towards HA, it was found that this ion inhibits the synthesis of octacalcium phosphate. However, it can substitute for calcium in this structure up to 15 atom %, in agreement with the increase of the cell parameters observed on increasing ion concentration. A similar behaviour was found for Magnesium ion, whereas Manganese inhibits the synthesis of octacalcium phosphate and it promotes the precipitation of dicalcium phosphate dehydrate. It was also found that Strontium affects the kinetics of the reaction of hydrolysis of α-TCP. It inhibits the conversion from α-TCP to hydroxyapatite. However, the resulting apatitic phase contains significant amounts of Sr2+ suggesting that the addition of Sr2+ to the composition of α-TCP bone cements could be successfully exploited for its local delivery in bone defects. The hydrolysis of α-TCP has been investigated also in the presence of increasing amounts of gelatin: the results indicated that this biopolymer accelerates the hydrolysis reaction and promotes the conversion of α-TCP into OCP, suggesting that its addition in the composition of calcium phosphate cements can be employed to modulate the OCP/HA ratio, and as a consequence the solubility, of the set cement. II. Deposition of modified calcium phosphates on metallic substrates. Coating with a thin film of calcium phosphates is frequently applied on the surface of metallic implants in order to combine the high mechanical strength of the metal with the excellent bioactivity of the calcium phosphates surface layers. During this PhD thesis, thank to the collaboration with prof. I.N. Mihailescu, head of the Laser-Surface-Plasma Interactions Laboratory (National Institute for Lasers, Plasma and Radiation Physics – Laser Department, Bucharest) Pulsed Laser Deposition has been successfully applied to deposit thin films of Sr substituted HA on Titanium substrates. The synthesized coatings displayed a uniform Sr distribution, a granular surface and a good degree of crystallinity which slightly decreased on increasing Sr content. The results of in vitro tests carried out on osteoblast-like and osteoclast cells suggested that the presence of Sr in HA thin films can enhance the positive effect of HA coatings on osteointegration and bone regeneration, and prevent undesirable bone resorption. The possibility to introduce an active molecule in the implant site was explored using Matrix Assisted Pulsed Laser Evaporation to deposit hydroxyapatite nanocrystals at different content of alendronate, a bisphosphonate widely employed in the treatments of pathological diseases associated to bone loss. The coatings displayed a good degree of crystallinity, and the results of in vitro tests indicated that alendronate promotes proliferation and differentiation of osteoblasts even when incorporated into hydroxyapatite. III. Synthesis of drug carriers with a delayed release modulated by a calcium phosphate coating. A core-shell system for modulated drug delivery and release has been developed through optimization of the experimental conditions to cover gelatin microspheres with a uniform layer of calcium phosphate. The kinetics of the release from uncoated and coated microspheres was investigated using aspirin as a model drug. It was shown that the presence of the calcium phosphate shell delays the release of aspirin and allows to modulate its action.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent knowledge supports the hypothesis that, beyond meeting nutrition needs, diet may modulate various functions in the body and play beneficial roles in some diseases. Research on functional foods is addressing the physiologic effects and health benefits of foods and food components, with the aim of authorizing specific health claims. The recognition that oxidative stress plays a major role in the pathophysiology of cardiac disorders has led to extensive investigations of the protective effects of exogenous antioxidants, but results are controversial. A promising strategy for protecting cardiac cells against oxidative damage may be through the induction of endogenous phase 2 enzymes with the enhancement of cellular antioxidant capacity. Sulforaphane (SF), a naturally occurring isothiocyanate abundant in Cruciferous vegetables, has gained attention as a potential chemopreventive compound thanks to its ability to induce several classes of genes implicated in reactive oxygen species (ROS) and electrophiles detoxification. Antioxidant responsive element (ARE)-mediated gene induction is a pivotal mechanism of cellular defence against the toxicity of electrophiles and ROS. The transcription factor NF-E2-related factor-2 (Nrf2), is essential for the up-regulation of these genes. We investigated whether SF could exert cardioprotective effects against oxidative stress and elucidated the mechanisms underpinning these effects. Accordingly, using cultured rat neonatal cardiomyocytes as a model system, we evaluated the time-dependent induction of gene transcription, the corresponding protein expression and activity of various antioxidant and phase 2 enzymes (catalase, superoxide dismutase, glutathione and related enzymes glutathione reductase, glutathione peroxidase and glutathione S-transferase, NAD(P)H: quinone oxidoreductase 1 and thioredoxine reductase) elicited by SF. The results were correlated to intracellular ROS production and cell viability after oxidative stress generated by H2O2, and confirmed the ability of SF to exert cytoprotective effects acting as an indirect antioxidant. Furthermore, to get better insight into SF mechanism of action, we investigated the effect of SF treatment on Nrf2 and the upstream signalling pathways MAPK ERK1/2 and PI3K/Akt, known to mediate a pro survival signal in the heart. The use of specific inhibitors of ERK1/2 and Akt phosphorylation demonstrated their involvement in phase 2 enzymes induction. The concentration of SF tested in this study is comparable to peak plasma concentration achieved after dietary exposure giving clear relevance to our data to support dietary intake of Cruciferous vegetables in cytoprotection against oxidative stress, a common determinant of many cardiovascular diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Naturally occurring cancers in pet dogs and humans share many features, including histological appearance, tumour genetics, molecular targets, biological behaviour and response to conventional therapies. Studying dogs with cancer is likely to provide a valuable perspective that is distinct from that generated by the study of human or rodent cancers alone. The value of this opportunity has been increasingly recognized in the field of cancer research for the identification of cancer-associated genes, the study of environmental risk factors, understanding tumour biology and progression, and, perhaps most importantly, the evaluation and development of novel cancer therapeutics”.(Paoloni and Khanna, 2008) In last years, the author has investigated some molecular features of cancer in dogs. The Thesis is articulated in two main sections. In section 1, the preliminary results of a research project aimed at investigating the role of somatic mutations of Ataxia-Telangiectasia mutated (ATM) gene in predisposing to cancer in boxer dogs, are presented. The canine boxer breed may be considered an unique opportunity to disclose the role of ATM somatic mutation since boxer dogs are known to be dramatically susceptible to cancer and since they may be considered a closed gene pool. Furthermore, dogs share with human the some environment. Overall, the abovementioned features could be considered extremely useful for our purposes. In the section 2, the results of our studies aimed at setting up accurate and sensitive molecular assays for diagnosing and assessing minimal residual disease in lymphoproliferative disorders of dogs, are presented. The results of those molecular assay may be directly translated in the field of Veterinary practice as well as the may be used to improve our objective evaluation of new investigational drugs effectiveness in canine cancer trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La possibilità di indurre stati ipotermici ed ipometabolici come il torpore o l’ibernazione in animali non ibernanti può avere dei risvolti utili nella pratica medica, in quanto permetterebbe di trarre vantaggio dagli effetti benefici dell’ipotermia senza gli effetti compensatori negativi causati dalla risposta omeostatica dell’organismo. Con questo lavoro vogliamo proporre un nuovo approccio, che coinvolge il blocco farmacologico dell’attività dei neuroni nel bulbo rostroventromediale (RVMM), un nucleo troncoencefalico che si è rivelato essere uno snodo chiave nella regolazione della termogenesi attraverso il controllo dell’attività del tessuto adiposo bruno, della vasomozione cutanea e del cuore. Nel nostro esperimento, sei iniezioni consecutive del agonista GABAA muscimolo nel RVMM, inducono uno stato reversibile di profonda ipotermia (21°C al Nadir) in ratti esposti ad una temperatura ambientale di 15°C. Lo stato ipotermico/ipomentabolico prodotto dall’inibizione dei neuroni del RVMM mostra forti similitudini col torpore naturale, anche per quanto concerne le modificazioni elettroencefalografiche osservate durante e dopo la procedura. Come negli ibernati naturali, nei ratti cui viene inibito il controllo della termogenesi si osserva uno spostamento verso le regioni lente delle spettro di tutte le frequenze dello spettro EEG durante l’ipotermia, ed un forte incremento dello spettro EEG dopo il ritorno alla normotermia, in particolare della banda Delta (0,5-4Hz) durante il sonno NREM. Per concludere, questi risultati dimostrano che l’inibizione farmacologica selettiva di un nucleo troncoencefalico chiave nel controllo della termogenesi è sufficiente per indurre uno stato di psuedo-torpore nel ratto, una specie che non presenta stati di torpore spontaneo. Un approccio di questo tipo può aprire nuove prospettive per l’utilizzo in ambito medico dell’ipotermia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Host-Pathogen Interaction is a very vast field of biological sciences, indeed every year many un- known pathogens are uncovered leading to an exponential growth of this field. The present work lyes between its boundaries, touching different aspects of host-pathogen interaction: We have evaluate the permissiveness of Mesenchimal Stem cell (FM-MSC from now on) to all known human affecting herpesvirus. Our study demonstrate that FM-MSC are full permissive to HSV1, HSV2, HCMV and VZV. On the other hand HHV6, HHV7, EBV and HHV8 are susceptible, but failed to activate a lytic infection program. FM-MSC are pluripotent stem cell and have been studied intensely in last decade. FM-MSC are employed in some clinical applications. For this reason it is important to known the degree of susceptibility to transmittable pathogens. Our atten- tion has then moved to bacterial pathogens: we have performed a proteome-wide in silico analy- sis of Chlamydiaceae family, searching for putative Nuclear localization Signal (NLS). Chlamy- diaceae are a family of obligate intracellular parasites. It’s reasonably to think that its members could delivered to nucleus effector proteins via NLS sequences: if that were the case the identifi- cation of NLS carrying proteins could open the way to therapeutic approaches. Our results strengthen this hypothesis: we have identified 72 protein bearing NLS, and verified their func- tionality with in vivo assays. Finally we have conceived a molecular scissor, creating a fusion protein between HIV-1 IN protein and FokI catalytic domain (a deoxyexonuclease domain). Our aim is to obtain chimeric enzyme (trojIN) which selectively identify IN naturally occurring target (HIV LTR sites) and cleaves subsequently LTR carrying DNA (for example integrated HIV1 DNA). Our preliminary results are promising since we have identified trojIN mutated version capable to selectively recognize LTR carrying DNA in an in vitro experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La poliradicoloneurite acuta idiopatica (ACIP) è una patologia infiammatoria che interessa le radici di più nervi spinali, descritta soprattutto nel cane, più raramente nel gatto, caratterizzata da insorgenza acuta di paresi/paralisi flaccida. L’ACIP mostra notevoli similitudini con la sindrome di Guillan-Barrè dell’uomo (GBS), in cui la patogenesi è su base autoimmunitaria ed è stata correlata con la presenza di alcuni fattori scatenanti (trigger). Lo scopo di questo lavoro è stato quello di caratterizzare l’ACIP in 26 cani, descrivendone la sintomatologia, l’evoluzione clinica, i risultati degli esami diagnostici. La diagnosi si è basata sui riscontri dell’anamnesi, della visita neurologica e del decorso confermata, quando possibile, dai rilievi elettrodiagnostici. Su tutti i cani è stata valutata l’esposizione a specifici agenti infettivi (Toxoplasma gondii, Neospora canunim, Ehrlichia canis, Leishmania infantum), o altri fattori (come vaccinazioni) che potrebbero aver agito da “trigger” per l’instaurarsi della patologia; sull’intera popolazione e su 19 cani non neurologici (gruppo di controllo), si è proceduto alla ricerca degli anticorpi anti-gangliosidi. La sintomatologia di più frequente riscontro (25/26) ha coinvolto la funzione motoria (paresi/plegia) con prevalente interessamento dei 4 arti (24/25) . Sei cani hanno ricevuto una terapia farmacologica, che non ne ha influenzato il decorso, favorevole in 24/26 casi. In 9 pazienti è stata rilevata una precedente esposizione a potenziali trigger; in 10 casi si è riscontrato un titolo anticorpale positivo ad almeno un agente infettivo testato. In 17/26 cani si è ottenuto un titolo anticorpale anti-GM2 e anti-GA1; nella popolazione di controllo solo un caso è risultato positivo. Questi risultati hanno contribuito a consolidare le conoscenze di questa patologia, validando l’utilità della ricerca anticorpale anti-gangliosidica per la diagnosi di ACIP e facendo intravedere la possibilità che l’ACIP possa essere assimilate alla GBS anche dal punto di vista patogenetico, per la quale potrebbe essere considerata come modello animale spontaneo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Mediterranean Sea is expected to react faster to global change compared to the ocean and is already showing more pronounced warming and acidification rates. A study performed along the Italian western coast showed that porosity of the skeleton increases with temperature in the zooxanthellate (i.e. symbiotic with unicellular algae named zooxanthellae) solitary scleractinian Balanophyllia europaea while it does not vary with temperature in the solitary non-zooxanthellate Leptopsammia pruvoti. These results were confirmed by another study that indicated that the increase in porosity was accompanied by an increase of the fraction of the largest pores in the pore-space, perhaps due to an inhibition of the photosynthetic process at elevated temperatures, causing an attenuation of calcification. B. europaea, L. pruvoti and the colonial non-zooxanthellate Astroides calycularis, transplanted along a natural pH gradient, showed that high temperature exacerbated the negative effect of lowered pH on their mortality rates. The growth of the zooxanthellate species did not react to reduced pH, while the growth of the two non-zooxanthellate species was negatively affected. Reduced abundance of naturally occurring B. europaea, a mollusk, a calcifying and a non-calcifying macroalgae were observed along the gradient while no variation was seen in the abundance of a calcifying green alga. With decreasing pH, the mineralogy of the coral and mollusk did not change, while the two calcifying algae decreased the content of aragonite in favor of the less soluble calcium sulphates and whewellite (calcium oxalate), possibly as a mechanism of phenotypic plasticity. Increased values of porosity and macroporosity with CO2 were observed in B. europaea specimens, indicating reduces the resistance of its skeletons to mechanical stresses with increasing acidity. These findings, added to the negative effect of temperature on various biological parameters, generate concern on the sensitivity of this zooxanthellate species to the envisaged global climate change scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Medicina Veterinaria l'avvelenamento da rodenticidi anticoagulanti è conosciuto e studiato ormai da anni, essendo una delle intossicazioni più comunemente riscontrate nelle specie non target. In letteratura si rinvengono numerose pubblicazioni ma alcuni aspetti sono rimasti ancora inesplorati.Questo studio si propone di valutare il processo infiammatorio, mediante le proteine di fase acuta (APPs), in corso di fenomeni emorragici, prendendo come modello reale un gruppo di soggetti accidentalmente avvelenati da rodenticidi anticoagulanti. I 102 soggetti avvelenati presentano un valore più elevato di proteina C reattiva (CRP)con una mediana di 4.77 mg/dl statisticamente significativo rispetto alla mediana delle due popolazioni di controllo di pari entità numerica create con cross match di sesso, razza ed età; rispettivamente 0.02 mg/dl dei soggetti sani e 0.37 mg/dl dei soggetti malati di altre patologie. Inoltre all'interno del gruppo dei soggetti avvelenati un valore di CRP elevato all'ammissione può predisporre al decesso. La proteina C reattiva assume quindi un ruolo diagnostico e prognostico in questo avvelenamento. Un'altra finalità, di non inferiore importanza, è quella di definire una linea guida terapeutica con l'ausilio di biomarker coagulativi e di valutare la sicurezza della vitamina K per via endovenosa: in 73 cani, non in terapia con vitamina k, intossicati da rodenticidi anticoagulanti, i tempi della coagulazione (PT ed aPTT) ritornano nel range di normalità dopo 4 ore dalla prima somministrazione di 5 mg/kg di vitamina k per via endovenosa e nessun soggetto durante e dopo il trattamento ha manifestato reazioni anafilattiche, nessuno dei pazienti ha necessitato trasfusione ematica e tutti sono sopravvissuti. Infine si è valutata l'epidemiologia dell'ingestione dei prodotti rodenticidi nella specie oggetto di studio e la determinazione dei principi attivi mediante cromatografia liquida abbinata a spettrofotometria di massa (UPLC-MS/MS).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aging is characterized by a chronic, low-grade inflammatory state called “inflammaging”. Mitochondria are the main source of reactive oxygen species (ROS), which trigger the production of pro-inflammatory molecules. We are interested in studying the age-related modifications of the mitochondrial DNA (mtDNA), which can be affected by the lifelong exposure to ROS and are responsible of mitochondrial dysfunction. Moreover, increasing evidences show that telomere shortening, naturally occurring with aging, is involved in mtDNA damage processes and thus in the pathogenesis of age-related disorders. Thus the primary aim of this thesis was the analysis of mtDNA copy number, deletion level and integrity in different-age human biopsies from liver, vastus lateralis skeletal muscle of healthy subjects and patients with limited mobility of lower limbs (LMLL), as well as adipose tissue. The telomere length and the expression of nuclear genes related to mitobiogenesis, fusion and fission, mitophagy, mitochondrial protein quality control system, hypoxia, production and protection from ROS were also evaluated. In liver the decrease in mtDNA integrity with age is accompanied with an increase in mtDNA copy number, suggesting the existence of a “compensatory mechanism” able to maintain the functionality of this organ. Different is the case of vastus lateralis muscle, where any “compensatory pathway” is activated and mtDNA integrity and copy number decrease with age, both in healthy subjects and in patients. Interestingly, mtDNA rearrangements do not incur in adipose tissue with advancing age. Finally, in all tissues a marked gender difference appears, suggesting that aging and also gender diversely affect mtDNA rearrangements and telomere length in the three human tissues considered, likely depending on their different metabolic needs and inflammatory status.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological systems are complex and highly organized architectures governed by noncovalent interactions, which are responsible for molecular recognition, self-assembly, self-organization, adaptation and evolution processes. These systems provided the inspiration for the development of supramolecular chemistry, that aimed at the design of artificial multicomponent molecular assemblies, namely supramolecular systems, properly designed to perform different operations: each constituting unit performs a single act, whereas the entire supramolecular system is able to execute a more complex function, resulting from the cooperation of the constituting components. Supramolecular chemistry deals with the development of molecular systems able to mimic naturally occurring events, for example complexation and self-assembly through the establishment of noncovalent interactions. Moreover, the application of external stimuli, such as light, allows to perform these operations in a time- and space-controlled manner. These systems can interact with biological systems and, thus, can be applied for bioimaging, therapeutic and drug delivery purposes. In this work the study of biocompatible supramolecular species able to interact with light is presented. The first part deals with the photophysical, photochemical and electrochemical characterization of water-soluble blue emitting triazoloquinolinium and triazolopyridinium salts. Moreover, their interaction with DNA has been explored, in the perspective of developing water-soluble systems for bioimaging applications. In the second part, the effect exerted by the presence of azobenzene-bearing supramolecular species in liposomes, inserted both in the phospholipid bilayer and in the in the aqueous core of vesicles has been studied, in order to develop systems able to deliver small molecules and ions in a photocontrolled manner. Moreover, the versatility of azobenzene and its broad range of applications have been highlighted, since conjugated oligoazobenzene derivatives proved not to be adequate to be inserted in the phospholipid bilayer of liposomes, but their electrochemical properties made them interesting candidates as electron acceptor materials for photovoltaic applications.