3 resultados para Levodopa

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To assess if the intake of levodopa in patients with Parkinson’s Disease (PD) changes cerebral connectivity, as revealed by simultaneous recording of hemodynamic (functional MRI, or fMRI) and electric (electroencephalogram, EEG) signals. Particularly, we hypothesize that the strongest changes in FC will involve the motor network, which is the most impaired in PD. Methods: Eight patients with diagnosis of PD “probable”, therapy with levodopa exclusively, normal cognitive and affective status, were included. Exclusion criteria were: moderate-severe rest tremor, levodopa induced dyskinesia, evidence of gray or white matter abnormalities on structural MRI. Scalp EEG (64 channels) were acquired inside the scanner (1.5 Tesla) before and after the intake of levodopa. fMRI functional connectivity was computed from four regions of interest: right and left supplementary motor area (SMA) and right and left precentral gyrus (primary motor cortex). Weighted partial directed coherence (w-PDC) was computed in the inverse space after the removal of EEG gradient and cardioballistic artifacts. Results and discussion: fMRI group analysis shows that the intake of levodopa increases hemodynamic functional connectivity among the SMAs / primary motor cortex and: sensory-motor network itself, attention network and default mode network. w-PDC analysis shows that EEG connectivity among regions of the motor network has the tendency to decrease after the intake the levodopa; furthermore, regions belonging to the DMN have the tendency to increase their outflow toward the rest of the brain. These findings, even if in a small sample of patients, suggest that other resting state physiological functional networks, beyond the motor one, are affected in patients with PD. The behavioral and cognitive tasks corresponding to the affected networks could benefit from the intake of levodopa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impairment of postural control is a common consequence of Parkinson's disease (PD) that becomes more and more critical with the progression of the disease, in spite of the available medications. Postural instability is one of the most disabling features of PD and induces difficulties with postural transitions, initiation of movements, gait disorders, inability to live independently at home, and is the major cause of falls. Falls are frequent (with over 38% falling each year) and may induce adverse consequences like soft tissue injuries, hip fractures, and immobility due to fear of falling. As the disease progresses, both postural instability and fear of falling worsen, which leads patients with PD to become increasingly immobilized. The main aims of this dissertation are to: 1) detect and assess, in a quantitative way, impairments of postural control in PD subjects, investigate the central mechanisms that control such motor performance, and how these mechanism are affected by levodopa; 2) develop and validate a protocol, using wearable inertial sensors, to measure postural sway and postural transitions prior to step initiation; 3) find quantitative measures sensitive to impairments of postural control in early stages of PD and quantitative biomarkers of disease progression; and 4) test the feasibility and effects of a recently-developed audio-biofeedback system in maintaining balance in subjects with PD. In the first set of studies, we showed how PD reduces functional limits of stability as well as the magnitude and velocity of postural preparation during voluntary, forward and backward leaning while standing. Levodopa improves the limits of stability but not the postural strategies used to achieve the leaning. Further, we found a strong relationship between backward voluntary limits of stability and size of automatic postural response to backward perturbations in control subjects and in PD subjects ON medication. Such relation might suggest that the central nervous system presets postural response parameters based on perceived maximum limits and this presetting is absent in PD patients OFF medication but restored with levodopa replacement. Furthermore, we investigated how the size of preparatory postural adjustments (APAs) prior to step initiation depend on initial stance width. We found that patients with PD did not scale up the size of their APA with stance width as much as control subjects so they had much more difficulty initiating a step from a wide stance than from a narrow stance. This results supports the hypothesis that subjects with PD maintain a narrow stance as a compensation for their inability to sufficiently increase the size of their lateral APA to allow speedy step initiation in wide stance. In the second set of studies, we demonstrated that it is possible to use wearable accelerometers to quantify postural performance during quiet stance and step initiation balance tasks in healthy subjects. We used a model to predict center of pressure displacements associated with accelerations at the upper and lower back and thigh. This approach allows the measurement of balance control without the use of a force platform outside the laboratory environment. We used wearable accelerometers on a population of early, untreated PD patients, and found that postural control in stance and postural preparation prior to a step are impaired early in the disease when the typical balance and gait intiation symptoms are not yet clearly manifested. These novel results suggest that technological measures of postural control can be more sensitive than clinical measures. Furthermore, we assessed spontaneous sway and step initiation longitudinally across 1 year in patients with early, untreated PD. We found that changes in trunk sway, and especially movement smoothness, measured as Jerk, could be used as an objective measure of PD and its progression. In the third set of studies, we studied the feasibility of adapting an existing audio-biofeedback device to improve balance control in patients with PD. Preliminary results showed that PD subjects found the system easy-to-use and helpful, and they were able to correctly follow the audio information when available. Audiobiofeedback improved the properties of trunk sway during quiet stance. Our results have many implications for i) the understanding the central mechanisms that control postural motor performance, and how these mechanisms are affected by levodopa; ii) the design of innovative protocols for measuring and remote monitoring of motor performance in the elderly or subjects with PD; and iii) the development of technologies for improving balance, mobility, and consequently quality of life in patients with balance disorders, such as PD patients with augmented biofeedback paradigms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.