1 resultado para Arbuscular mycorrhiza

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the recent years, consumers became more aware and sensible in respect to environment and food safety matters. They are more and more interested in organic agriculture and markets and tend to prefer ‘organic’ products more than their traditional counterparts. To increase the quality and reduce the cost of production in organic and low-input agriculture, the 6FP-European “QLIF” project investigated the use of natural products such as bio-inoculants. They are mostly composed by arbuscular mycorrhizal fungi and other microorganisms, so-called “plant probiotic” microorganisms (PPM), because they help keeping an high yield, even under abiotic and biotic stressful conditions. Italian laws (DLgs 217, 2006) have recently included them as “special fertilizers”. This thesis focuses on the use of special fertilizers when growing tomatoes with organic methods in open field conditions, and the effects they induce on yield, quality and microbial rhizospheric communities. The primary objective was to achieve a better understanding of how plant-probiotic micro-flora management could buffer future reduction of external inputs, while keeping tomato fruit yield, quality and system sustainability. We studied microbial rhizospheric communities with statistical, molecular and histological methods. This work have demonstrated that long-lasting introduction of inoculum positively affected micorrhizal colonization and resistance against pathogens. Instead repeated introduction of compost negatively affected tomato quality, likely because it destabilized the ripening process, leading to over-ripening and increasing the amount of not-marketable product. Instead. After two years without any significant difference, the third year extreme combinations of inoculum and compost inputs (low inoculum with high amounts of compost, or vice versa) increased mycorrhizal colonization. As a result, in order to reduce production costs, we recommend using only inoculum rather than compost. Secondly, this thesis analyses how mycorrhizal colonization varies in respect to different tomato cultivars and experimental field locations. We found statistically significant differences between locations and between arbuscular colonization patterns per variety. To confirm these histological findings, we started a set of molecular experiments. The thesis discusses preliminary results and recommends their continuation and refinement to gather the complete results.