12 resultados para ALDOSTERONE BLOCKADE

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy and heart failure, thus representing a potential therapeutic target. Apoptosis of cardiac cells can be induced experimentally by several stimuli including hypoxia, serum withdrawal or combination of both. Several lines of research suggest that neurohormonal mechanisms play a central role in the progression of heart failure. In particular, excessive activation of the sympathetic nervous system or the renin-angiotensin-aldosterone system is known to have deleterious effects on the heart. Recent studies report that norepinephrine (NE), the primary transmitter of sympathetic nervous system, and aldosterone (ALD), which is actively produced in failing human heart, are able to induce apoptosis of rat cardiomyocytes. Polyamines are biogenic amines involved in many cellular processes, including apoptosis. Actually it appears that these molecules can act as promoting, modulating or protective agents in apoptosis depending on apoptotic stimulus and cellular model. We have studied the involvement of polyamines in the apoptosis of cardiac cells induced in a model of simulated ischemia and following treatment with NE or ALD. Methods: H9c2 cardiomyoblasts were exposed to a condition of simulated ischemia, consisting of hypoxia plus serum deprivation. Cardiomyocyte cultures were prepared from 1-3 day-old neonatal Wistar rat hearts. Polyamine depletion was obtained by culturing the cells in the presence of α-difluoromethylornithine (DFMO). Polyamines were separated and quantified in acidic cellular extracts by HPLC after derivatization with dansyl chloride. Caspase activity was measured by the cleavage of the fluorogenic peptide substrate. Ornithine decarboxylase (ODC) activity was measured by estimation of the release of 14C-CO2 from 14C-ornithine. DNA fragmentation was visualized by the method of terminal transferase-mediated dUTP nick end-labeling (TUNEL), and DNA laddering on agarose gel electophoresis. Cytochrome c was detected by immunoflorescent staining. Activation of signal transduction pathways was investigated by western blotting. Results: The results indicate that simulated ischemia, NE and ALD cause an early induction of the activity of ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, followed by a later increase of caspase activity, a family of proteases that execute the death program and induce cell death. This effect was prevented in the presence of DFMO, an irreversible inhibitor of ODC, thus suggesting that polyamines are involved in the execution of the death program activated by these stimuli. In H9c2 cells DFMO inhibits several molecular events related to apoptosis that follow simulated ischemia, such as the release of cytochrome c from mitochondria, down-regulation of Bcl-xL, and DNA fragmentation. The anti-apoptotic protein survivin is down-regulated after ALD or NE treatement and polyamine depletion obtained by DFMO partially opposes survivin decrease. Moreover, a study of key signal transduction pathways governing cell death and survival, revealed an involvement of AMP activated protein kinase (AMPK) and AKT kinase, in the modulation by polyamines of the response of cardiomyocytes to NE. In fact polyamine depleted cells show an altered pattern of AMPK and AKT activation that may contrast apoptosis and appears to result from a differential effect on the specific phosphatases that dephosphorylate and switch off these signaling proteins. Conclusions: These results indicate that polyamines are involved in the execution of the death program activated in cardiac cells by heart failure-related stimuli, like ischemia, ALD and NE, and suggest that their apoptosis facilitating action is mediated by a network of specific phosphatases and kinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim of the research: to develop a prototype of homogeneous high-throughput screening (HTS) for identification of novel integrin antagonists for the treatment of ocular allergy and to better understand the mechanisms of action of integrin-mediated levocabastine antiallergic action. Results: This thesis provides evidence that adopting scintillation proximity assay (SPA) levocabastine (IC50=406 mM), but not the first-generation antihistamine chlorpheniramine, displaces [125I]fibronectin (FN) binding to human a4b1 integrin. This result is supported by flow cytometry analysis, where levocabastine antagonizes the binding of a primary antibody to integrin a4 expressed in Jurkat E6.1 cells. Levocabastine, but not chlorpheniramine, binds to a4b1 integrin and prevents eosinophil adhesion to VCAM-1, FN or human umbilical vein endothelial cells (HUVEC) cultured in vitro. Similarly, levocabastine affects aLb2/ICAM-1-mediated adhesion of Jurkat E6.1 cells. Analyzing the supernatant of TNF-a-treated (24h) eosinophilic cells (EoL-1), we report that levocabastine reduces the TNF-a-induced release of the cytokines IL-12p40, IL-8 and VEGF. Finally, in a model of allergic conjunctivitis, levocastine eye drops (0.05%) reduced the clinical aspects of the early and late phase reactions and the conjunctival expression of a4b1 integrin by reducing infiltrated eosinophils. Conclusions: SPA is a highly efficient, amenable to automation and robust binding assay to screen novel integrin antagonists in a HTS setting. We propose that blockade of integrinmediated cell adhesion might be a target of the anti-allergic action of levocabastine and may play a role in preventing eosinophil adhesion and infiltration in allergic conjunctivitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enteric nervous system regulates autonomously from the central nervous system all the reflex pathways that control blood flow, motility, water and electrolyte transport and acid secretion. The ability of the gut to function in isolation is one of the most intriguing phenomenons in neurogastroenterology. This requires coding of sensory stimuli by cells in the gut wall. Enteric neurons are prominent candidates to relay mechanosensitivity. Surprisingly, the identity of mechanosensitive neurons in the enteric nervous system as well as the appropriate stimulus modality is unknown despite the evidence that enteric neurons respond to sustained distension. Objectives: The aim of our study was to record from mechanosensitive neurons using physiological stimulus modalities. Identification of sensory neurons is of central importance to understand sensory transmission under normal conditions and in gut diseases associated with sensorimotor dysfunctions, such as Irritable Bowel Syndrome. Only then it will be possible to identify novel targets that help to normalise sensory functions. Methods: We used guinea-pig ileum myenteric plexus preparations and recorded responses of all neurons in a given ganglion with a fast neuroimaging technique based on voltage sensitive dyes. To evoke a mechanical response we used two different kinds of stimuli: firstly we applied a local mechanical distortion of the ganglion surface with von Frey hair. Secondarily we mimic the ganglia deformation during physiological movements of myenteric ganglia in a freely contracting ileal preparation. We were able to reliably and reproducibly mimic this distortion by intraganglionic injections of small volumes of oxygenated and buffered Krebs solution using stimulus parameters that correspond to single contractions. We also performed in every ganglion tested, electrical stimulations to evoke fast excitatory postsynaptic potentials. Immunohistochemistry reactions were done with antibodies against Calbindin and NeuN, considered markers for sensory neurons. Results: Recordings were performed in 46 ganglia from 31 guinea pigs. In every ganglion tested we found from 1 to 21 (from 3% to 62%) responding cells with a median value of 7 (24% of the total number of neurons). The response consisted of an almost instantaneous spike discharge that showed adaptation. The median value of the action potential frequency in the responding neurons was 2.0 Hz, with a recording time of 1255 ms. The spike discharge lasted for 302 ± 231 ms and occurred only during the initial deformation phase. During sustained deformation no spike discharge was observed. The response was reproducible and was a direct activation of the enteric neurons since it remained after synaptic blockade with hexamethonium or ω-conotoxin and after long time perfusion with capsaicin. Muscle tone appears not to be required for activation of mechanosensory neurons. Mechanosensory neurons showed a response to mechanical stimulation related to the stimulus strength. All mechanosensory neurons received fast synaptic inputs. There was no correlation between mechanosensitivity and Calbindin-IR and NeuN-IR (44% of mechanosensitive neurones Calb-IR-/NeuN-IR-). Conclusions: We identified mechanosensitive neurons in the myenteric plexus of the guinea pig ileum which responded to brief deformation. These cells appear to be rapidly accommodating neurons which respond to dynamic change. All mechanosensitive neurons received fast synaptic input suggesting that their activity can be highly modulated by other neurons and hence there is a low stimulus fidelity which allows adjusting the gain in a sensory network. Mechanosensitivity appears to be a common feature of many enteric neurons belonging to different functional classes. This supports the existence of multifunctional enteric neurons which may fulfil sensory, integrative and motor functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify the regions of recurrent copy number abnormality in osteosarcoma and their effect on gene expression, we performed an integrated genome-wide high-resolution array CGH (aCGH) and gene expression profiling analysis on 40 human OS tissues and 12 OS cell lines. This analysis identified several recurrent chromosome regions that contain genes that show a gene dosage effect on gene expression. A further search, performed on those genes that were over-expressed and localized in the frequently amplified chromosomal regions, greatly reduced the number of candidate genes while their characterization using gene ontology (GO) analysis suggests the importance of the deregulation of the G1-to-S phase in the development of the disease. We also identified frequent deletions on 3q in the vicinity of LSAMP and performed a fine mapping analysis of the breakpoints. We precisely mapped the breakpoints in several instances and demonstrated that the majority do not involve the LSAMP gene itself, and that they appear to form by a process of non-homologous end joining. In addition, aCGH analysis revealed frequent gains of IGF1R that were highly correlated with its protein level. Blockade of IGF1R in OS cell lines with high copy number gain led to growth inhibition suggesting that IGF1R may be a viable drug target in OS, particularly in patients with copy number driven overexpression of this receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and aims of the research Nitric oxide (NO) and endocannabinoids (eCBs) are major retrograde messengers, involved in synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in many brain areas (including hippocampus and neocortex), as well as in learning and memory processes. NO is synthesized by NO synthase (NOS) in response to increased cytosolic Ca2+ and mainly exerts its functions through soluble guanylate cyclase (sGC) and cGMP production. The main target of cGMP is the cGMP-dependent protein kinase (PKG). Activity-dependent release of eCBs in the CNS leads to the activation of the Gαi/o-coupled cannabinoid receptor 1 (CB1) at both glutamatergic and inhibitory synapses. The perirhinal cortex (Prh) is a multimodal associative cortex of the temporal lobe, critically involved in visual recognition memory. LTD is proposed to be the cellular correlate underlying this form of memory. Cholinergic neurotransmission has been shown to play a critical role in both visual recognition memory and LTD in Prh. Moreover, visual recognition memory is one of the main cognitive functions impaired in the early stages of Alzheimer’s disease. The main aim of my research was to investigate the role of NO and ECBs in synaptic plasticity in rat Prh and in visual recognition memory. Part of this research was dedicated to the study of synaptic transmission and plasticity in a murine model (Tg2576) of Alzheimer’s disease. Methods Field potential recordings. Extracellular field potential recordings were carried out in horizontal Prh slices from Sprague-Dawley or Dark Agouti juvenile (p21-35) rats. LTD was induced with a single train of 3000 pulses delivered at 5 Hz (10 min), or via bath application of carbachol (Cch; 50 μM) for 10 min. LTP was induced by theta-burst stimulation (TBS). In addition, input/output curves and 5Hz-LTD were carried out in Prh slices from 3 month-old Tg2576 mice and littermate controls. Behavioural experiments. The spontaneous novel object exploration task was performed in intra-Prh bilaterally cannulated adult Dark Agouti rats. Drugs or vehicle (saline) were directly infused into the Prh 15 min before training to verify the role of nNOS and CB1 in visual recognition memory acquisition. Object recognition memory was tested at 20 min and 24h after the end of the training phase. Results Electrophysiological experiments in Prh slices from juvenile rats showed that 5Hz-LTD is due to the activation of the NOS/sGC/PKG pathway, whereas Cch-LTD relies on NOS/sGC but not PKG activation. By contrast, NO does not appear to be involved in LTP in this preparation. Furthermore, I found that eCBs are involved in LTP induction, but not in basal synaptic transmission, 5Hz-LTD and Cch-LTD. Behavioural experiments demonstrated that the blockade of nNOS impairs rat visual recognition memory tested at 24 hours, but not at 20 min; however, the blockade of CB1 did not affect visual recognition memory acquisition tested at both time points specified. In three month-old Tg2576 mice, deficits in basal synaptic transmission and 5Hz-LTD were observed compared to littermate controls. Conclusions The results obtained in Prh slices from juvenile rats indicate that NO and CB1 play a role in the induction of LTD and LTP, respectively. These results are confirmed by the observation that nNOS, but not CB1, is involved in visual recognition memory acquisition. The preliminary results obtained in the murine model of Alzheimer’s disease indicate that deficits in synaptic transmission and plasticity occur very early in Prh; further investigations are required to characterize the molecular mechanisms underlying these deficits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La possibilità di indurre stati ipotermici ed ipometabolici come il torpore o l’ibernazione in animali non ibernanti può avere dei risvolti utili nella pratica medica, in quanto permetterebbe di trarre vantaggio dagli effetti benefici dell’ipotermia senza gli effetti compensatori negativi causati dalla risposta omeostatica dell’organismo. Con questo lavoro vogliamo proporre un nuovo approccio, che coinvolge il blocco farmacologico dell’attività dei neuroni nel bulbo rostroventromediale (RVMM), un nucleo troncoencefalico che si è rivelato essere uno snodo chiave nella regolazione della termogenesi attraverso il controllo dell’attività del tessuto adiposo bruno, della vasomozione cutanea e del cuore. Nel nostro esperimento, sei iniezioni consecutive del agonista GABAA muscimolo nel RVMM, inducono uno stato reversibile di profonda ipotermia (21°C al Nadir) in ratti esposti ad una temperatura ambientale di 15°C. Lo stato ipotermico/ipomentabolico prodotto dall’inibizione dei neuroni del RVMM mostra forti similitudini col torpore naturale, anche per quanto concerne le modificazioni elettroencefalografiche osservate durante e dopo la procedura. Come negli ibernati naturali, nei ratti cui viene inibito il controllo della termogenesi si osserva uno spostamento verso le regioni lente delle spettro di tutte le frequenze dello spettro EEG durante l’ipotermia, ed un forte incremento dello spettro EEG dopo il ritorno alla normotermia, in particolare della banda Delta (0,5-4Hz) durante il sonno NREM. Per concludere, questi risultati dimostrano che l’inibizione farmacologica selettiva di un nucleo troncoencefalico chiave nel controllo della termogenesi è sufficiente per indurre uno stato di psuedo-torpore nel ratto, una specie che non presenta stati di torpore spontaneo. Un approccio di questo tipo può aprire nuove prospettive per l’utilizzo in ambito medico dell’ipotermia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iodide transport is necessary for the synthesis of thyroid hormones following accumulation in the follicular lumen out of thyroid cells, via channels unknown with the exception of pendrin. According to our hypothesis, TMEM16A could be the main molecular identity of the channel mediating iodide efflux in the thyroid gland. TMEM16A is the prior candidate for calcium-activated chloride conductance (CaCC). TMEM16A belongs to the TMEM16/anoctamin family comprising ten members (TMEM16A-K). Higher affinity of TMEM16A for iodide and predicted expression in the thyroid gland suggest its mediation of iodide efflux. The aim of this project was to identify the role of TMEM16A in iodide transport in the thyroid gland, by characterizing its molecular expression and functional properties. We demonstrated that TMEM16F, H, K transcripts are expressed in FRTL-5 thyroid cells, as well as TMEM16A, which is TSH-independent. Tumor tissue from human thyroid maintains TMEM16A expression. Functional in vivo experiments in FRTL-5, stably expressing YFP-H148Q/I152L fluorescent protein as a biosensor, showed that iodide efflux is stimulated by agonists of purinergic receptors with an order of potency of ATP>UTP>ADP (compatible with an involvement of P2Y purinergic receptors), and by agonists of adrenergic receptors (epinephrine, norepinephrine and phenylephrine). Iodide efflux was blocked by α-receptor antagonists prazosin and phentolamine, consistent with a role of α1 adrenergic receptors. Iodide efflux was specifically dependent on calcium mobilized from intracellular compartments and induced by the calcium ionophore ionomycin. CaCC blockers suppressed ionomycin-/ATP-/epinephrine-stimulated iodide efflux. Heterologous expression of TMEM16A in CHO K1 cells induced calcium-activated iodide fluxes. All these results support the hypothesis of the involvement of TMEM16A in calcium-dependent iodide efflux induced by receptor agonists in thyroid cells. TMEM16A may represent a new pharmacological target for thyroid cancer therapy, since its blockade may enhance the retention of radioiodide by tumour cells enhancing the efficacy of radioablative therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to synthesize multipotent drugs for the treatment of Alzheimer’s disease (AD) and for benign prostatic hyperplasia (BPH), two diseases that affect the elderly. AD is a neurodegenerative disorder that is characterized, among other factors, by loss of cholinergic neurons. Selective activation of M1 receptors through an allosteric site could restore the cholinergic hypofunction, improving the cognition in AD patients. We describe here the discovery and SAR of a novel series of quinone derivatives. Among them, 1 was the most interesting, being a high M1 selective positive allosteric modulator. At 100 nM, 1 triplicated the production of cAMP induced by oxotremorine. Moreover, it inhibited AChE and it displayed antioxidant properties. Site-directed mutagenesis experiments indicated that 1 acts at an allosteric site involving residue F77. Thus, 1 is a promising drug because the M1 activation may offer disease-modifying properties that could address and reduce most of AD hallmarks. BPH is an enlargement of the prostate caused by increased cellular growth. Blockade of α1-ARs is the predominant form of medical therapy for the treatment of the symptoms associated with BPH. α1-ARs are classified into three subtypes. The α1A- and α1D-AR subtypes are predominant in the prostate, while α1B-ARs regulate the blood pressure. Herein, we report the synthesis of quinazoline-derivatives obtained replacing the piperazine ring of doxazosin and prazosin with (S)- or (R)-3-aminopiperidine. The presence of a chiral center in the 3-C position of the piperidine ring allowed us to exploit the importance of stereochemistry in the binding at α1-ARs. It turned out that the S configuration at the 3-C position of the piperidine increases the affinity of the compounds at all three α1-AR subtypes, whereas the configuration at the benzodioxole ring of doxazosin derivatives is not critical for the interaction with α1-ARs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IL-33/ST2 axis is known to promote Th2 immune responses and has been linked to several autoimmune and inflammatory disorders, including inflammatory bowel disease (IBD), and recent evidences show that it can regulate eosinophils (EOS) infiltration and function. Based also on the well documented relationship between EOS and IBD, we assessed the role of IL-33-mediated eosinophilia and ileal inflammation in SAMP1/YitFc (SAMP) murine model of Th1/Th2 chronic enteritis, and we found that IL-33 is related to inflammation progression and EOS infiltration as well as IL-5 and eotaxins increase. Administering IL-33 to SAMP and AKR mice augmented eosinophilia, eotaxins mRNA expression and Th2 molecules production, whereas blockade of ST2 and/or typical EOS molecules, such as IL-5 and CCR3, resulted in a marked decrease of inflammation, EOS infiltration, IL-5 and eotaxins mRNA expression and Th2 cytokines production. Human data supported mice’s showing an increased colocalization of IL-33 and EOS in the colon mucosa of UC patients, as well as an augmented IL-5 and eotaxins mRNA expression, when compared to non-UC. Lastly we analyzed SAMP raised in germ free (GF) condition to see the microbiota effect on IL-33 expression and Th2 responses leading to chronic intestinal inflammation. We found a remarkable decrease in ileal IL-33 and Th2 cytokines mRNA expression as well as EOS infiltration in GF versus normal SAMP with comparable inflammatory scores. Moreover, EOS depletion in normal SAMP didn’t affect IL-33 mRNA expression. These data demonstrate a pathogenic role of IL-33-mediated eosinophilia in chronic intestinal inflammation, and that blockade of IL-33 and/or downstream EOS activation may represent a novel therapeutic modality to treat patients with IBD. Also they highlight the gut microbiota role in IL-33 production, and the following EOS infiltration in the intestinal mucosa, confirming that the microbiota is essential in mounting potent Th2 response leading to chronic ileitis in SAMP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chronic myeloid leukemia complexity and the difficulties of disease eradication have recently led to the development of drugs which, together with the inhibitors of TK, could eliminate leukemia stem cells preventing the occurrence of relapses in patients undergoing transplantation. The Hedgehog (Hh) signaling pathway positively regulates the self-renewal and the maintenance of leukemic stem cells and not, and this function is evolutionarily conserved. Using Drosophila as a model, we studied the efficacy of the SMO inhibitor drug that inhibit the human protein Smoothened (SMO). SMO is a crucial component in the signal transduction of Hh and its blockade in mammals leads to a reduction in the disease induction. Here we show that administration of the SMO inhibitor to animals has a specific effect directed against the Drosophila ortholog protein, causing loss of quiescence and hematopoietic precursors mobilization. The SMO inhibitor induces in L3 larvae the appearance of melanotic nodules generated as response by Drosophila immune system to the increase of its hemocytes. The same phenotype is induced even by the dsRNA:SMO specific expression in hematopoietic precursors of the lymph gland. The drug action is also confirmed at cellular level. The study of molecular markers has allowed us to demonstrate that SMO inhibitor leads to a reduction of the quiescent precursors and to an increase of the differentiated cells. Moreover administering the inhibitor to heterozygous for a null allele of Smo, we observe a significant increase in the phenotype penetrance compared to administration to wild type animals. This helps to confirm the specific effect of the drug itself. These data taken together indicate that the study of inhibitors of Smo in Drosophila can represent a useful way to dissect their action mechanism at the molecular-genetic level in order to collect information applicable to the studies of the disease in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Essential, primary, or idiopathic hypertension is defined as high BP in which secondary causes such as renovascular disease, renal failure, pheochromocytoma, hyperaldosteronism, or other causes of secondary hypertension are not present. Essential hypertension accounts for 80-90% of all cases of hypertension; it is a heterogeneous disorder, with different patients having different causal factors that may lead to high BP. Life-style, diet, race, physical activity, smoke, cultural level, environmental factors, age, sex and genetic characteristics play a key role in the increasing risk. Conversely to the essential hypertension, secondary hypertension is often associated with the presence of other pathological conditions such as dyslipidaemia, hypercholesterolemia, diabetes mellitus, obesity and primary aldosteronism. Amongst them, primary aldosteronism represents one of the most common cause of secondary hypertension, with a prevalence of 5-15% depending on the severity of blood pressure. Besides high blood pressure values, a principal feature of primary aldosteronism is the hypersecretion of mineralcorticoid hormone, aldosterone, in a manner that is fairly autonomous of the renin-angiotensin system. Primary aldosteronism is a heterogeneous pathology that may be divided essentially in two groups, idiopathic and familial form. Despite all this knowledge, there are so many hypertensive cases that cannot be explained. These individuals apparently seem to be healthy, but they have a great risk to develop CVD. The lack of known risk factors makes difficult their classification in a scale of risk. Over the last three decades a good help has been given by the pharmacogenetics/pharmacogenomics, a new area of the traditional pharmacology that try to explain and find correlations between genetic variation, (rare variations, SNPs, mutations), and the risk to develop a particular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergy is a common hypersensitivity disorder that affects 15% to 20% of the population and its prevalence is increasing worldwide. Its severity correlates with the degree of eosinophil infiltration into the conjunctiva, which is mediated by chemokines that stimulate the production of adhesion molecules like intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on the endothelial cell surface. The α4β1 and α4β7 integrins are expressed in eosinophils and contribute to their activation and infiltration in AC through the binding to VCAM-1 or fibronectin, expressed on vascular endothelial cells. Blockade of α4 integrins might be a therapeutical achievement in allergic eye diseases. DS 70, that show an IC50 in the nanomolar range against α4β1 integrin in Jurkat cells and in the eosinophilic cell line EOL-1. This compound was able to prevent cell adhesion to VCAM-1 and FN in vitro. In a scintillation proximity assay DS70 displaced 125I-FN binding to human α4β1 integrin and, in flow cytometry analysis, it antagonized the binding of a primary antibody to α4β1 integrin expressed on the Jurkat cells surface as well. Furthermore, we analysed also its effects on integrin α4β1 signalling. In an vivo model of allergic conjunctivitis, topical DS70 reduced the clinical aspects of EPR (early phase reaction) and LPR (late phase reaction), by reducing clinical score, eosinophil accumulation, mRNA levels of cytochines and chemochines pro-inflammatory and the conjunctival expression of α4 integrin. In conclusion, DS70 seems a novel antiallergic ocular agent that has significant effects on both early and late phases of ocular allergy.