8 resultados para global health

em Comissão Econômica para a América Latina e o Caribe (CEPAL)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report analyses the agriculture, health and tourism sectors in Jamaica to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Jamaica. It also has the potential to provide essential input for identifying and preparing policies and strategies to help move the Region closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The outcomes from investigating the agriculture sector indicate that for the sugar-cane subsector the harvests under both the A2 and B2 scenarios decrease at first and then increase as the mid-century mark is approached. With respect to the yam subsector the results indicate that the yield of yam will increase from 17.4 to 23.1 tonnes per hectare (33%) under the A2 scenario, and 18.4 to 23.9 (30%) tonnes per hectare under the B2 scenario over the period 2011 to 2050. Similar to the forecasts for yam, the results for escallion suggest that yields will continue to increase to mid-century. Adaptation in the sugar cane sub-sector could involve replanting and irrigation that appear to generate net benefits at the three selected discount rates for the A2 scenario, but only at a discount rate of 1% for the B2 scenario. For yam and escallion, investment in irrigation will earn significant net benefits for both the A2 and B2 scenarios at the three selected rates of discount. It is recommended that if adaptation strategies are part of a package of strategies for improving efficiency and hence enhancing competitiveness, then the yields of each crop can be raised sufficiently to warrant investment in adaptation to climate change. The analysis of the health sector demonstrates the potential for climate change to add a substantial burden to the future health systems in Jamaica, something that that will only compound the country’s vulnerability to other anticipated impacts of climate change. The results clearly show that the incidence of dengue fever will increase if climate change continues unabated, with more cases projected for the A2 scenario than the B2. The models predicted a decrease in the incidence of gastroenteritis and leptospirosis with climate change, indicating that Jamaica will benefit from climate change with a reduction in the number of cases of gastroenteritis and leptospirosis. Due to the long time horizon anticipated for climate change, Jamaica should start implementing adaptation strategies focused on the health sector by promoting an enabling environment, strengthening communities, strengthening the monitoring, surveillance and response systems and integrating adaptation into development plans and actions. Small-island developing states like Jamaica must be proactive in implementing adaptation strategies, which will reduce the risk of climate change. On the global stage the country must continue to agitate for the implementation of the mitigation strategies for developed countries as outlined in the Kyoto protocol. The results regarding the tourism sector suggest that the sector is likely to incur losses due to climate change, the most significant of which is under the A2 scenario. Climatic features, such as temperature and precipitation, will affect the demand for tourism in Jamaica. By 2050 the industry is expected to lose US$ 132.2 million and 106.1 million under the A2 and B2 scenarios, respectively. In addition to changes in the climatic suitability for tourism, climate change is also likely to have important supply-side effects from extreme events and acidification of the ocean. The expected loss from extreme events is projected to be approximately US$ 5.48 billion (A2) and US$ 4.71 billion (B2). Even more devastating is the effect of ocean acidification on the tourism sector. The analysis shows that US$ 7.95 billion (A2) and US$ 7.04 billion is expected to be lost by mid-century. The benefit-cost analysis indicates that most of the adaptation strategies are expected to produce negative net benefits, and it is highly likely that the cost burden would have to be carried by the state. The options that generated positive ratios were: redesigning and retrofitting all relevant tourism facilities, restoring corals and educating the public and developing rescue and evacuation plans. Given the relative importance of tourism to the macroeconomy one possible option is to seek assistance from multilateral funding agencies. It is recommended that the government first undertake a detailed analysis of the vulnerability of each sector and, in particular tourism, to climate change. Further, more realistic socio-economic scenarios should be developed so as to inform future benefit-cost analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also in terms of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Montserrat for the period 2010 - 2050, and by estimating the monetary value associated with this excess disease burden. The diseases initially considered in this report are variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrheal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1%, 2% and 4%, results show mean annual costs (morbidity and mortality) ranges of $0.61 million (in the B2 scenario, discounted at 4% annually) – $1 million (in the A2 scenario, discounted at 1% annually) for Montserrat. These costs are compared to adaptation cost scenarios involving increased direct spending on per capita health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health burdens in the period 2010-2050. The methodology and results suggest that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for Montserrat. Also the report highlights the need for this to be part of a coordinated regional response that avoids duplication in spending.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Saint Lucia for the period 2010 - 2050, and by estimating the non-market, statistical life-based costs associated with this excess disease burden. The diseases initially considered in this report are a variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrhoeal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1, 2, and 4%, results show mean annual costs (morbidity and mortality) ranges of $80.2 million (in the B2 scenario, discounted at 4% annually) -$182.4 million (in the A2 scenario, discounted at 1% annually) for St. Lucia.1 These costs are compared to adaptation cost scenarios involving direct and indirect interventions in health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health costs from 2010-2050. In this context indirect interventions target sectors other than healthcare (e.g. water supply). It is also important to highlight that interventions can target both the supply of health infrastructure (including health status and disease monitoring), and households. It is suggested that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for St Lucia. Also, the need for this to be part of a coordinated regional response that avoids duplication in spending is highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is considered to be the most pervasive and truly global of all issues affecting humanity. It poses a serious threat to the environment, as well as to economies and societies. Whilst it is clear that the impacts of climate change are varied, scientists have agreed that its effects will not be evenly distributed and that developing countries and small island developing States (SIDS) will be the first and hardest hit. Small island developing States, many of whom have fewer resources to adapt socially, technologically and financially to climate change, are considered to be the most vulnerable to the potential impacts of climate change. An economic analysis of climate change can provide essential input for identifying and preparing policies and strategies to help move the Caribbean closer to solving the problems associated with climate change, and to attaining individual and regional sustainable development goals. Climate change is expected to affect the health of populations. In fact, the World Health Organization (WHO), in Protecting Health from Climate Change (2008), states that the continuation of current patterns of fossil fuel use, development and population growth will lead to ongoing climate change, with serious effects on the environment and, consequently, on human lives and health. Assessing the economics of potential health impacts of climate variability and change requires an understanding of both the vulnerability of a population and its capacity to respond to new conditions. The Intergovernmental Panel on Climate Change (IPCC) defines vulnerability as the degree to which individuals and systems are susceptible to, or unable to cope with, the adverse effects of climate change, including climate variability and extremes (WHO and others, 2003). The United Nations Economic Commission for Latin America and the Caribbean (ECLAC), in collaboration with the Caribbean Community Centre for Climate Change (CCCCC), is pursuing a regional project to ―Review the Economics of Climate Change in the Caribbean‖ (RECCC). The purpose of the project is to assess the likely economic impacts of climate change on key sectors of Caribbean economies, through applying robust simulation modelling analyses under various socio-economic scenarios and carbon emission trajectories for the next 40 years. The findings are expected to stimulate local and national governments, regional institutions, the private sector and civil society to craft and implement policies, cost-effective options and efficient choices to mitigate and adapt to climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is a naturally occurring phenomenon in which the earth‘s climate goes through cycles of warming and cooling; these changes usually take place incrementally over millennia. Over the past century, there has been an anomalous increase in global temperature, giving rise to accelerated climate change. It is widely accepted that greenhouse gas emissions from human activities such as industries have contributed significantly to the increase in global temperatures. The existence and survival of all living organisms is predicated on the ability of the environment in which they live not only to provide conditions for their basic needs but also conditions suitable for growth and reproduction. Unabated climate change threatens the existence of biophysical and ecological systems on a planetary scale. The present study aims to examine the economic impact of climate change on health in Jamaica over the period 2011-2050. To this end, three disease conditions with known climate sensitivity and importance to Jamaican public health were modelled. These were: dengue fever, leptospirosis and gastroenteritis in children under age 5. Historical prevalence data on these diseases were obtained from the Ministry of Health Jamaica, the Caribbean Epidemiology Centre, the Climate Studies Group Mona, University of the West Indies Mona campus, and the Meteorological Service of Jamaica. Data obtained spanned a twelve-year period of 1995-2007. Monthly data were obtained for dengue and gastroenteritis, while for leptospirosis, the annual number of cases for 1995-2005 was utilized. The two SRES emission scenarios chosen were A2 and B2 using the European Centre Hamburg Model (ECHAM) global climate model to predict climate variables for these scenarios. A business as usual (BAU) scenario was developed using historical disease data for the period 2000-2009 (dengue fever and gastroenteritis) and 1995-2005 (leptospirosis) as the reference decades for the respective diseases. The BAU scenario examined the occurrence of the diseases in the absence of climate change. It assumed that the disease trend would remain unchanged over the projected period and the number of cases of disease for each decade would be the same as the reference decade. The model used in the present study utilized predictive empirical statistical modelling to extrapolate the climate/disease relationship in time, to estimate the number of climate change-related cases under future climate change scenarios. The study used a Poisson regression model that considered seasonality and lag effects to determine the best-fit model in relation to the diseases under consideration. Zhang and others (2008), in their review of climate change and the transmission of vector-borne diseases, found that: ―Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease….‖ (Zhang 2008) Water, sanitation and health expenditure are key determinants of health. In the draft of the second communication to IPCC, Jamaica noted the vulnerability of public health to climate change, including sanitation and access to water (MSJ/UNDP, 2009). Sanitation, which in its broadest context includes the removal of waste (excreta, solid, or other hazardous waste), is a predictor of vector-borne diseases (e.g. dengue fever), diarrhoeal diseases (such as gastroenteritis) and zoonoses (such as leptospirosis). In conceptualizing the model, an attempt was made to include non-climate predictors of these climate-sensitive diseases. The importance of sanitation and water access to the control of dengue, gastroenteritis and leptospirosis were included in the Poisson regression model. The Poisson regression model obtained was then used to predict the number of disease cases into the future (2011-2050) for each emission scenario. After projecting the number of cases, the cost associated with each scenario was calculated using four cost components. 1. Treatment cost morbidity estimate. The treatment cost for the number of cases was calculated using reference values found in the literature for each condition. The figures were derived from studies of the cost of treatment and represent ambulatory and non-fatal hospitalized care for dengue fever and gastroenteritis. Due to the paucity of published literature on the health care cost associated with leptospirosis, only the cost of diagnosis and antibiotic therapy were included in the calculation. 2. Mortality estimates. Mortality estimates are recorded as case fatality rates. Where local data were available, these were utilized. Where these were unavailable, appropriate reference values from the literature were used. 3. Productivity loss. Productivity loss was calculated using a human capital approach, by multiplying the expected number of productive days lost by the caregiver and/or the infected person, by GDP per capita per day (US$ 14) at 2008 GDP using 2008 US$ exchange rates. 4. No-option cost. The no-option cost refers to adaptation strategies for the control of dengue fever which are ongoing and already a part of the core functions of the Vector Control Division of the Ministry of Health, Jamaica. An estimated US$ 2.1 million is utilized each year in conducting activities to prevent the post-hurricane spread of vector borne diseases and diarrhoea. The cost includes public education, fogging, laboratory support, larvicidal activities and surveillance. This no-option cost was converted to per capita estimates, using population estimates for Jamaica up to 2050 obtained from the Statistical Institute of Jamaica (STATIN, 2006) and the assumption of one expected major hurricane per decade. During the decade 2000-2009, Jamaica had an average inflation of 10.4% (CIA Fact book, last updated May 2011). This average decadal inflation rate was applied to the no-option cost, which was inflated by 10% for each successive decade to adjust for changes in inflation over time.