103 resultados para HCV


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the associations of HPA polymorphisms -1, -3, and -5 with HIV/HCV coinfection were included in this study 60 HIV/HCV-coinfected patients from the Sao Paulo State health service centers. Data reported by Verdichio-Moraes et al. (2009: J. Med Virol 81:757-759) were used as the non-infected and HCV monoinfected groups. Human Platelet Polymorphism genotyping was performed in 60 Patients co-infected with HIV/HCV by PCR-SSP or PCR-RFLP. HIV subtyping and HCV genotyping was performed by RT-PCR followed sequencing. The data analyses were performed using the χ2 test or Fisher's Exact Test and the logistic regression model. Patients coinfected with HIV/HCV presented HCV either genotype 1 (78.3%) or non-1 (21.7%) and HIV either subtype B (85.0%) or non-B (15%). The Human Platelet Polymorphism-1a/1b genotype was more frequent (P < 0.05) in HIV/HCV coinfection than in HCV monoinfection and the allelic frequency of Human Platelet Polymorphism-5b in the Patients coinfected with HIV/HCV was higher (P < 0.05) than in HCV monoinfected cases and non-infected individuals. These data suggest that the presence of specific HPA allele on platelets could favor the existence of coinfection. On the other hand, Human Platelet Polymorphism-5a/5b was more frequent (P < 0.05) in HIV/HCV coinfected and HCV monoinfected groups than in the non-infected individuals, suggesting that this platelet genotype is related to HCV infection, regardless of HIV presence. Results suggest that the Human Platelet Polymorphism profile in HIV/HCV coinfected individuals differs from the one of both HCV monoinfected and non-infected population. So, the Human Platelet Polymorphism can be a genetic marker associated with HIV/HCV coinfection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Química - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic hepatitis C virus (HCV) infection is a worldwide health problem that may evolve to cirrhosis and hepatocellular carcinoma. Incompletely understood immune system mechanisms have been associated with impaired viral clearance. The nonclassical class I human leukocyte antigen G (HLA-G) molecule may downregulate immune system cell functions exhibiting well-recognized tolerogenic properties. HCV genotype was analyzed in chronic HCV-infected patients. Because HLA-G expression may be induced by certain viruses, we evaluated the presence of HLA-G in the liver microenvironment obtained from 89 biopsies of patients harboring chronic HCV infection and stratified according to clinical and histopathological features. Overall, data indicated that HCV genotype 1 was predominant, especially subgenotype 1a, with a prevalence of 87%. HLA-G expression was observed in 45(51%) liver specimens, and it was more frequent in milder stages of chronic hepatitis (67.4%) than in moderate (27.8%; p = 0.009) and severe (36.0%; p = 0.021) stages of the disease. Altogether, these results suggest that the expression of HLA-G in the context of HCV is a complex process modulated by many factors, which may contribute to an immunologic environment favoring viral persistence. However, because the milder forms predominantly expressed HLA-G, a protective role of this molecule may not be excluded. (C) 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The piezoelectric quartz crystal resonators modified with oligonucleotide probes were used for detection of hepatitis C virus (HCV) in serum. The gold electrodes on either rough or smooth surface crystals were modified with a self-assembled monolayer of cystamine. After activation with glutaraldehyde, either avidin or streptavidin were immobilized and used for attachment of biotinylated DNA probes (four different sequences). Piezoelectric biosensors were used in a flow-through setup for direct monitoring of DNA resulting from the reverse transcriptase-linked polymerase chain reaction (RT-PCR) amplification of the original viral RNA. The samples of patients with hepatitis C were analyzed and the results were compared with the standard RT-PCR procedure (Amplicor test kit of Roche, microwell format with spectrophotometric evaluation). The piezoelectric hybridization assay was completed in 10 min and the same sensing surface was suitable for repeated use. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances have accelerated the development of biosensors for the analysis of specific gene sequences. In this kind of biosensor, a DNA probe is immobilized on a transducer and the hybridization with the target DNA is monitored by suitable methodology. In the present work, the streptavidin (STA) was encapsulated in thin films siloxane-poly(propylene oxide) hybrids prepared by sol-gel method and deposited on the graphite electrode surface by dip-coating process. Biotinylated 18-mer probes were immobilized through STA and a novel amperometric DNA biosensor for the detection and genotyping of the hepatitis C virus (genotypes 1, 2A/C, 2B and 3) is described. The HCV RNA from serum was submitted to reverse transcriptase-linked polymerase chain reaction (RT-PCR) and biotin-labeled cDNA was obtained. Thus, the cDNA was hybridized to the target-specific oligonucleotide probe immobilized on the graphite electrode surface and following the avidin-peroxidase conjugate was added. The enzymatic response was investigated by constant potential amperometry at -0.45 V versus Ag/AgCl using H2O2 and KI solutions. HCV RNA negative and positive controls and positive samples of sera patients were analyzed and the results were compared to commercial kit. The proposed methodology appeared to be suitable and convenient tool for streptavidin immobilization and diagnose of HCV disease. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies have suggested that hepatitis C virus (HCV) may infect not only hepatocytes but may also be carried by platelets. Platelets express more than 20 polymorphic antigenic determinants on their surface, which are called human platelet antigens (HPA), To determine the allele frequency of the HPA-1 to -5 in patients infected with HCV, blood samples were collected from 257 blood donors for the control group and from 191 patients infected with HCV. DNA was isolated and amplified for genes HPA-1 to -4 using PCR Sequence Specific Primers (PCR-SSP) and HPA-5 using PCR-Restriction Fragment Length Polymorphism (PCR-RFLP). The allelic and genotypic frequency of HPA-5a in patients infected with HCV was found to be significantly lower(P < 0.05) than in the controls, and HPA-5b from patients infected with HCV was significantly higher (P < 0.05) than in controls. The increase in HPA5b allelic frequency in HCV infection may indicate a possible association between HCV infection and HPAs. J. Med. Virol. 81:757-759, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BackgroundDetection and quantification of hepatitis C virus (HCV) RNA is integral to diagnostic and therapeutic regimens. All molecular assays target the viral 5'-noncoding region (59-NCR), and all show genotype-dependent variation of sensitivities and viral load results. Non-western HCV genotypes have been under-represented in evaluation studies. An alternative diagnostic target region within the HCV genome could facilitate a new generation of assays.Methods and FindingsIn this study we determined by de novo sequencing that the 3'-X-tail element, characterized significantly later than the rest of the genome, is highly conserved across genotypes. To prove its clinical utility as a molecular diagnostic target, a prototype qualitative and quantitative test was developed and evaluated multicentrically on a large and complete panel of 725 clinical plasma samples, covering HCV genotypes 1-6, from four continents (Germany, UK, Brazil, South Africa, Singapore). To our knowledge, this is the most diversified and comprehensive panel of clinical and genotype specimens used in HCV nucleic acid testing (NAT) validation to date. The lower limit of detection (LOD) was 18.4 IU/ml (95% confidence interval, 15.3-24.1 IU/ml), suggesting applicability in donor blood screening. The upper LOD exceeded 10(-9) IU/ml, facilitating viral load monitoring within a wide dynamic range. In 598 genotyped samples, quantified by Bayer VERSANT 3.0 branched DNA (bDNA), X-tail-based viral loads were highly concordant with bDNA for all genotypes. Correlation coefficients between bDNA and X-tail NAT, for genotypes 1-6, were: 0.92, 0.85, 0.95, 0.91, 0.95, and 0.96, respectively; X-tail-based viral loads deviated by more than 0.5 log10 from 5'-NCR-based viral loads in only 12% of samples (maximum deviation, 0.85 log10). The successful introduction of X-tail NAT in a Brazilian laboratory confirmed the practical stability and robustness of the X-tail-based protocol. The assay was implemented at low reaction costs (US$8.70 per sample), short turnover times (2.5 h for up to 96 samples), and without technical difficulties.ConclusionThis study indicates a way to fundamentally improve HCV viral load monitoring and infection screening. Our prototype assay can serve as a template for a new generation of viral load assays. Additionally, to our knowledge this study provides the first open protocol to permit industry-grade HCV detection and quantification in resource-limited settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV) RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3) have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although progression of fibrosis in the chronic hepatitis C depends on environmental, viral, and host factors, genetic polymorphisms have been associated recently with this progression, including the expression of integrins, adhesion proteins. Some integrins expressed on the platelet membrane show polymorphic antigenic determinants called human platelet antigens (HPA), where the major ones are HPA-1, -3, -5. The association between HCV infection and HPA-5b has been demonstrated. Similarly, the HPA profile could determine if HPA is related to progression of fibrosis. The goal of this study was to evaluate the association between the frequencies of HPA-1, -3, and -5 and degree of fibrosis in HCV-infected patients. Genomic DNA from 143 HCV-infected patients was used as the source for HPA genotyping by PCR-SSP or PCR-RFLP. Progression of fibrosis was evaluated using the METAVIR scoring system, and the patients were grouped according to degree of fibrosis into G1 (n = 81, with F1, portal fibrosis without septa or F2, few septa) and G2 (n = 62, with F3, numerous septa, or F4, cirrhosis). Statistical analysis was performed using the proportional odds model. The genotypic frequency of HPA-1a/1b was significantly higher in the patients in G2. To evaluate the influence of the time of infection to the development of fibrosis and its effect on the genetic factor HPA-1, 96 patients from 143 studied were evaluated considering the time of HCV infection, and these results suggest that the HPA-1a/1b genotype promotes the development of fibrosis in HCV infection with time. J. Med. Virol. 84: 56-60, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed.Results: the atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures.Conclusions: This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants inhibitors. All models in the database are publicly accessible via our interactive website, providing us with large amount of structural models for use in protein-ligand docking analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of patients with chronic hepatitis C fail to respond to antiviral therapy. The genetic basis of this resistance is unknown. The quasispecies nature of HCV may have an important implication concerning viral persistence and response to therapy. The HCV nonstructural 5A (NS5A) protein has been controversially implicated in the inherent resistance of HCV to interferon (IFN) antiviral therapy. To evaluate whether the NS5A quasispecies pre-treatment composition of HCV 1a/1b is related to responsiveness to combined pegylated interferon (PEG-IFN) and Ribavirin therapy, detailed analyses of the complete NS5A were performed. Fifteen full-length NS5A clones were sequenced from 11 pretreatment samples of patients infected with genotype 1 HCV (3 virological sustained responders, 4 non-responders, and 4 end-of-treatment responders). Our study could not show a significant correlation between the mean number of mutations in HCV NS5A before treatment and treatment outcome, and the phylogenetic construction of complete NS5A sequences obtained from all patients failed to show any clustering associated with a specific response pattern. No single amino acid position was associated with different responses to therapy in any of the NS5A regions analyzed, and mutations were clustered downstream the ISDR, primarily in the V3 region. We observed that the CRS and NLS regions of the NS5A protein were conflicting for some variables analyzed, although no significant differences were found. If these two regions can have antagonistic functions, it seems viable that they present different mutation profiles when compared with treatment response. The patient sample that presented the lowest genetic distance values also presented the smallest number of variants, and the most heterogeneous pattern was seen in the end-of-treatment patients. These results suggest that a detailed molecular analysis of the NS5A region on a larger sample size may be necessary for understanding its role in the therapy outcome of HCV 1a/1b infection. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 x 10(-21) mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.