86 resultados para protein interaction

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An investigation is made of the influence from small amounts of the protein bovine serum albumin (BSA) on the lateral organization of low molecular weight surfactant sodium bis-2-ethylhexyl sulfosuccinate (AOT) at the air-water interface. Surface pressure (pi - A), surface potential (DeltaV - A) and Brewster angle microscopy (BAM) experiments were carried out, with particular emphasis on the monolayer stability under successive compression-expansion cycles. AOT monolayer is not stable at the air-water interface, which means that the majority of AOT molecules go into the aqueous subphase as monomers and/or normal micelles. When a waiting time elapses between spreading and compression, the surfactant monolayer tends to reorganize partially at the air-water interface, with a monolayer expansion being observed for waiting times as large as 12 h. The incorporation of very small amount of BSA (10(-9) M) at the interface, also inferred from BAM, increases the monolayer stability as revealed by pi - A and DeltaV - A results. For a waiting time of circa 3 h, the mixed monolayer reaches its maximum stability. This must be related to protein (and/or protein-surfactant complexes) adsorbed onto the AOT monolayer, thus altering the BSA conformation to accommodate its hydrophobic/hydrophilic residues. Furthermore, the effects from such small amounts of BSA in the monolayer formation and stabilization mean that the AOT monolayer responds cooperatively to BSA. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of small amounts of bovine serum albumin (BSA) (nM concentration) on the lateral organization of phospholipid monolayers at the air-water interface and transferred onto solid substrates as one-layer Langmuir-Blodgett (LB) films was investigated. The kinetics of adsorption of BSA onto the phospholipid monolayers was monitored with surface pressure isotherms in a Langmuir trough, for the zwitterionic dipalmitoylphosphatidyl ethanolamine (N,N-dimethyl-PE) and the anionic dimyristoylphosphatidic acid (DMPA). A monolayer of N,N-dimethyl-PE or DMPA incorporating BSA was transferred onto a solid substrate using the Langmuir-Blodgett technique. Atomic force microscopy (AFM) images of one-layer LB films displayed protein-phospholipid domains, whose morphology was characterized using dynamic scaling theories to calculate roughness exponents. For DMPA-BSA films the surface is characteristic of self-affine fractals, which may be described with the Kardar-Parisi-Zhang (KPZ) equation. on the other hand, for N,N-dimethyl-PE-BSA films, the results indicate a relatively flat surface within the globule. The height profile and the number and size of globules varied with the type of phospholipid. The overall results, from kinetics of adsorption on Langmuir monolayers and surface morphology in LB films, could be interpreted in terms of the higher affinity of BSA to the anionic DMPA than to the zwitterionic N,N-dimethyl-PE. Furthermore, the effects from such small amounts of BSA in the monolayer point to a cooperative response of DMPA and N,N-dimethyl-PE monolayers to the protein. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The eukaryotic translation initiation factor 2 (eIF2) binds the methionyl-initiator tRNA in a GTP-dependent mode. This complex associates with the 40 S ribosomal particle, which then, with the aid of other factors, binds to the 5' end of the mRNA and migrates to the first AUG codon, where eIF5 promotes GTP hydrolysis, followed by the formation of the 80 S ribosome. Here we provide a comparative sequence analysis of the β subunit of eIF2 and its archaeal counterpart (aIF2β). aIF2β differs from eIF2β in not possessing an N-terminal extension implicated in binding RNA, eIF5 and eIF2B. The remaining sequences are highly conserved, and are shared with eIF5. Previously isolated mutations in the yeast eIF2β, which allow initiation of translation at UUG codons due to the uncovering of an intrinsic GTPase activity in eIF2, involve residues that are conserved in aIF2β, but not in eIF5. We show that the sequence of eIF2B homologous to aIF2β is sufficient for binding eIF2γ, the only subunit with which it interacts, and comprises, at the most, 78 residues, eIF5 does not interact with eIF2γ, despite its similarity with eIF2β, probably because of a gap in homology in this region. These observations have implications for the evolution of the mechanism of translation initiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIFSA domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIFSA may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Airway eosinophilia is considered a central event in the pathogenesis of asthma. The toxic components of eosinophils are thought to be important in inducing bronchial mucosal injury and dysfunction. Previous studies have suggested an interaction between nitric oxide (NO) and chemokines in modulating eosinophil functions, but this is still conflicting. In the present study, we have carried out functional assays (adhesion and degranulation) and flow cytometry analysis of adhesion molecules (VLA-4 and Mac-1 expression) to evaluate the interactions between NO and CC-chemokines (eotaxin and RANTES) in human eosinophils. Methods: Eosinophils were purified using a percoll gradient followed byimmunomagnetic cell separator. Cell adhesion and degranulation were evaluated by measuring eosinophil peroxidase (EPO) activity, whereas expression of Mac-1 and VLA-4 was detected using flow cytometry. Results: At 4 h incubation, both eotaxin (100 ng/ml) and RANTES (1000 ng/ml) increased by 133% and 131% eosinophil adhesion, respectively. L-NAME alone (but not D-NAME) also increased the eosinophil adhesion, but the co-incubation of L-NAME with eotaxin or RANTES did not further affect the increased adhesion seen with chemokines alone. In addition, L-NAME alone (but not D-NAME) caused a significant cell degranulation, but it did not affect the CC-chemokine-induced cell degranulation. Incubation of eosinophils with eotaxin or RANTES, in absence or presence of L-NAME, did not affect the expression of VLA-4 and Mac-1 on eosinophil surface. Eotaxin and RANTES (100 ng/ml each) also failed to elevate the cyclic GMP levels above baseline in human eosinophils. Conclusion: Eotaxin and RANTES increase the eosinophil adhesion to fibronectin-coated plates and promote cell degranulation by NO-independent mechanisms. The failure of CC-chemokines to affect VLA-4 and Mac-1 expression suggests that changes in integrin function (avidity or affinity) are rather involved in the enhanced adhesion. © 2008 Lintomen et al; licensee BioMed Central Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vip3Aa, Vip3Af, Cry1Ab, and Cry1Fa were tested for their toxicities and binding interactions. Vip3A proteins were more toxic than Cry1 proteins. Binding assays showed independent specific binding sites for Cry1 and Vip3A proteins. Cry1Ab and Cry1Fa competed for the same binding sites, whereas Vip3Aa competed for those of Vip3Af. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Protein-protein interactions (PPIs) are essential for understanding the function of biological systems and have been characterized using a vast array of experimental techniques. These techniques detect only a small proportion of all PPIs and are labor intensive and time consuming. Therefore, the development of computational methods capable of predicting PPIs accelerates the pace of discovery of new interactions. This paper reports a machine learning-based prediction model, the Universal In Silico Predictor of Protein-Protein Interactions (UNISPPI), which is a decision tree model that can reliably predict PPIs for all species (including proteins from parasite-host associations) using only 20 combinations of amino acids frequencies from interacting and non-interacting proteins as learning features. UNISPPI was able to correctly classify 79.4% and 72.6% of experimentally supported interactions and non-interacting protein pairs, respectively, from an independent test set. Moreover, UNISPPI suggests that the frequencies of the amino acids asparagine, cysteine and isoleucine are important features for distinguishing between interacting and non-interacting protein pairs. We envisage that UNISPPI can be a useful tool for prioritizing interactions for experimental validation. © 2013 Valente et al.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results: In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role in YFV replication. Conclusions: Although the precise function of eIF3L on interactions with viral proteins is not entirely understood, these results indicate an interaction of eIF3L with YF NS5 and that eIF3L overexpression facilitates translation, which has potential implications for virus replication. © 2013 Morais et al.; licensee BioMed Central Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. © 2013 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os taninos da casca da semente de lentilha foram extraídos e purificados, levados à interação com albumina isolada de lentilha e com caseína; e estudados por turbidimetria. As interações da albumina e caseína com taninos purificados, a várias relações tanino-proteína, mostraram ser independente e dependente do pH, respectivamente. Hidrólise in vitro com tripsina das proteínas sem taninos indicou que o aquecimento a 99°C/15 min reduzia a susceptibilidade da albumina e aumentava a da caseína à tripsina. A influência de diferentes relações tanino:proteína (1:40; 1:20; 1:5; 1:2,5) na hidrólise mostrou maior inibição para caseína que para albumina de lentilha, independente de aquecimento. Após aquecimento ambas proteínas foram mais hidrolizadas para qualquer das relações tanino proteínas estudadas. A eletroforese em gel de poliacrilamida-dodecilsulfato de sódio do transcurso da hidrólise da interação tanino-albumina nativa mostra a dependência da relação tanino:proteína.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work realized a comparative study in meiosis of two triatomines, Panstrongylus herreri and P. megistus, by cytogenetic techniques involving the restriction endonucleases Hae III and Alu I and C-banding. The system of sex chromosomes in Panstrongylus is of the X1X2Y type, and experiments corroborated the common origin hypothesis of the X chromosomes by fragmentation of single X. In both species the restriction endonucleases (RE) presented banding patterns in part similar to C-banding. However, in some early meiotic phases it was possible to verify differentiation of the heterochromatic pattern. This work suggests that other elements besides presence of recognition sites, such as chromatin packing degree and DNA-protein interaction, act in RE results, since digestion patterns occur in early spermatogenesis. However, metaphase chromosomes were practically inaccessible to the endonucleases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)