32 resultados para perchlorate

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behaviour of tin in de-aerated sodium perchlorate was studied using potentiodynamic and potentiostatic techniques. Tin behaviour in sodium perchlorate has been complicated unexpectedly by the reduction of the perchlorate anion. It is shown that the reduction process takes place within a potential region comprising the negative side of the double layer region and the positive side of the hydrogen region (-0.7 less than or equal to E less than or equal to -1.3 V). The presence of oxide on the electrode surface favours the reduction reaction, which may occur in two steps: the formation of basic tin(II) chloride followed by its reduction, producing chloride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A potentiometric sensor for perchlorate anion was developed by mixing a silica gel, chemically modified with 1,4-diazabicyclo (2.2.2)octane, with an epoxy polymer and carbon. The electode showed Nernstian response to the perchlorate ion in the concentration range of 10(-1) and 10(-4) mol L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Covalently attached benzimidazole molecules on silica gel surface, ≡SiL (where L = N-propyl-benzimidazole), adsorbs Co(ClO4)2 from non-aqueous solvent by forming a surface complex according to the reaction: m ≡SiL + Co(ClO4)2 → (≡SiL)mCo(ClO4)2. The equilibrium constant and the adsorption capacity, determined by applying the Langmuir equation were b = 3.0 × 103 L mol-1 and Ns= 0.098 × 10-3 mol g-1, respectively. The metal is bonded through the nitrogen atom and the perchlorate ion is not coordinated. The ESR study indicated that the complex has essentially an octahedral geometry with tetragonal distortion, with the electrons of the four nitrogen atoms interacting with the cobalt central metal ion in the equatorial plane. Only one complex species was detected on the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltammetry has been employed to study the influence of systematic additions of citric acid on the E-I curves of Tin in 0.5 M NaClO4, in order to verify the film growth in the presence of the organic acid and the inhibition of the pitting corrosion of the metal. The minimum concentration of the organic acid needed to change the GI curves is 10(-2) M, in the pH range 1.0-4.0. At pH 3.0 and 4.0, the scan rate dependence on current density, in the potential region of formation and reduction of the film, showed that in a first stage adsorption occurs. In a second stage, the v(1/2) dependence found can he explained by ohmic resistance control. The formation of tin/citric acid complexes, 10(-2) M, is suggested. The pitting inhibition may be due to the formation of a mixed layer of tin in citric acid concentrations higher than 10(-2) oxide and tin citrate complexes on the electrode surface. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical preparation described herein involved the electrocatalytic oxidation of sulfite on a platinum electrode modified with nanostructured copper salen (salen=N,N'-ethylenebis(salicylideneiminato)) polymer films. The complex was prepared and electropolymerized at a platinum electrode in a 0.1 mol L-1 solution of tetrabutylammonium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.4V vs. SCE. After cycling the modified electrode in a 0.50 mol L-1 KCI solution, the estimated surface concentration was found to be equal to 2.2 x 10(-9) Mol cm(-2). This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the copper(II)/copper(III) couple. The potential peaks of the modified electrode in the electrolyte solution (aqueous) containing the different anions increase with the decrease of the ionic radius, demonstrating that the counter-ions influence the voltammetric behavior of the sensor. The potential peak was found to be linearly dependent upon the ratio [ionic charge]/[ionic radius]. The oxidation of the sulfite anion was performed at the platinum electrode at +0.9V vs. SCE. However, a significant decrease in the overpotential (+0.45V) was obtained while using the sensor, which minimized the effect of oxidizable interferences. A plot of the anodic current vs. the sulfite concentration for chronoamperometry (potential fixed = +0.45V) at the sensor was linear in the 4.0 x 10(-6) to 6.9 x 10(-5) mol L-1 concentration range and the concentration limit was 1.2 x 10(-6) mol L-1. The reaction order with respect to sulfite was determined by the slope of the logarithm of the current vs. the logarithm of the sulfite concentration. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N'-ethylene bis(salicylideneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at platinum electrode in acetonitrile/tetrabutylammonium perchlorate by cyclic voltammetry. The voltammetric behavior of the sensor was investigated in 0.5 mol L-1 KCl solution in the absence and presence of molecular oxygen. Thus, with the addition of oxygen to the solution, the increase of cathodic peak current (at -0.25 V vs. saturated calomel electrode (SCE)) of the modified electrode was observed. This result shows that the nickel-salen film on electrode surface promotes the reduction of oxygen. The reaction can be brought about electrochemically, where the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the molecular oxygen in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the oxygen reduction. A plot of the cathodic current vs. the dissolved oxygen concentration for chronoamperometry (fixed potential = -0.25 V vs. SCE) at the sensor was linear in the 3.95-9.20 mg L-1 concentration range and the concentration limit was 0.17 mg L-1 O-2. The proposed electrode is useful for the quality control and routine analysis of dissolved oxygen in commercial samples and environmental water. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with a commercial O-2 sensor. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An amperometric dipyrone sensor based on a polymeric nickel-salen (salen = N,N'-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. After cycling the modified electrode in a 0.50 mol L-1 KCl solution, the estimated surface concentration was found to be equal to 1.29 x 10(-9) mol cm(-2). This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the nickel(II)/nickel(III) couple. A plot of the anodic current versus the dipyrone concentration for chronoamperometry (potential fixed = +0.50 V) at the sensor was linear in the 4.7 x 10(-6) to 1.1 x 10(-4) mol L-1 concentration range and the concentration limit was 1.2 x 10(-6) mol L-1. The proposed electrode is useful for the quality control and routine analysis of dipyrone in pharmaceutical formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N '-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. The voltammetric behavior of the modified electrode was investigated in 0.5 mol L-1 KCl solution in the absence and presende of molecular oxygen. A significant increased of cathodic peak current (at -0.20 vs. SCE) of the modified electrode with addition of oxygen to the solution was observed. This result shows that the nickel-salen film on the surface of the electrode promotes the reduction of oxygen. The reaction can be brought about electrochemically where in the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the oxygen molecular in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The plot of the cathodic current versus the dissolved oxygen concentration for chronoamperometry (potential fixed = -0.20 V) at the sensor was linear in the concentration range of 3.95 to 9.20 mg L-1 with concentration limit of 0.17 mg L-1 O-2. The modified electrode proposed is useful for the quality control and routine analysis of dissolved oxygen in commercial water and environmental water samples. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with an O-2 commercial sensor. (C) 2011 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LiCoO2 powders were prepared by combustion synthesis, using metallic nitrates as the oxidant and metal sources and urea as fuel. A small amount of the LiCoO2 phase was obtained directly from the combustion reaction, however, a heat treatment was necessary for the phase crystallization. The heat treatment was performed at the temperature range from 400 up to 700 degreesC for 12 h. The powders were characterized by X-ray diffraction (XRD), X ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and specific surface area values were obtained by BET isotherms. Composite electrodes were prepared using a mixture of LiCoO2, carbon black and poly(vinylidene fluoride) (PVDF) in the 85:10:5% w/w ratio. The electrochemical behavior of these composites was evaluated in ethylene carbonate/dimethylcarbonate solution, using lithium perchlorate as supporting electrolyte. Cyclic voltammograms showed one reversible redox process at 4.0/3.85 V and one irreversible redox process at 3.3 V for the LiCoO2 obtained after a post-heat treatment at 400 and 500 degreesC.Raman spectroscopy showed the possible presence of LiCoO2 with cubic structure for the material obtained at 400 and 500 degreesC. This result is in agreement with X-ray data with structural refinement for the LiCoO2 powders obtained at different temperatures using the Rietveld method. Data from this method showed the coexistence of cubic LiCoO2 (spinel) and rhombohedral (layered) structures when LiCoO2 was obtained at lower temperatures (400 and 500 degreesC). The single rhombohedral structure for LiCoO2 was obtained after post-heat treatment at 600 degreesC. The maximum energy capacity in the first discharge was 136 mA g(-1) for the composite electrode based on LiCoO2 obtained after heat treatment at 700 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoelectrochemical degradation of p-nitrophenol (PNP) was investigated using titanium dioxide thin-film photoelectrode. The effects of different supporting electrolytes, pH, applied potential and PNP concentration were examined and discussed. Complete photodegradation was obtained in perchlorate medium at pH 2 when the photoanode was biased at +1.0 V (versus SCE) during a 3-h experiment. Under these conditions, carbon removal of approximately 60% was achieved. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Siloxane-polypropyleneoxide (PPO) hybrids doped with sodium perchlorate (NaClO4) obtained by the sol-gel process were prepared with two PPO molecular weights (2000 and 4000 g/mol) and two sodium concentrations such as [O]/[Na] = 4 and 15 (O being the ether-type oxygen of PPO chains). The structure of these hybrids was investigated by Na-23 nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy at the sodium K-edge (1071.8 eV) whereas complex impedance spectroscopy was used to determine their ionic conductivity. Three sodium sites were determined by NMR. The conjunction of NMR and X-ray absorption results allows us to identify one site in which Na is in a NaCl structure, a second one in which Na is in contact with perchlorate anions. The third site is attributed to mobile sodium species in interaction with the polymeric chain. The relative proportion of the different sites in the materials determines the ionic conductivity of the materials at room temperature: the largest ionic conductivity is 8.9 x 10(-6) Omega(-1) cm(-1) and is observed on the material with the larger amount (at least 85%) of sites in which sodium interacts with the polymer. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal decomposition of ammonium perchlorate (AP)/hydroxyl-terminated-polybutadiene (HTPB), the AP/HTPB solid propellant, was studied at different heating rates in dynamic nitrogen atmosphere. The exothermic reaction kinetics was studied by differential scanning calorimetry (DSC) in non-isothermal conditions. The Arrhenius Parameters were estimated according to the Ozawa method. The calculated activation energy was 134.5 W mol(-1), the pre-exponential factor, A, was 2.04.10(10) min(-1) and the reaction order for the global composite decomposition was estimated in 0.7 by the kinetic Shimadzu software based on the Ozawa method. The Kissinger method for obtaining the activation energy value was also used for comparison. These results are discussed here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potentiostatic and potentiodynamic studies were carried out to establish the inhibiting effects of citric acid on the pitting corrosion of tin. The critical potential (E-crit), which leads to pitting or general corrosion, was determined in sodium perchlorate solution in the pH range 1.0 to 4.0. Pit nucleation and growth, at pH 4.0, can be described by instantaneous nucleation followed by progressive nucleation. The results show that the minimum acid concentration needed to inhibit pitting of tin is 10(-2) M. Pitting occurrence by direct interaction between metal and perchlorate anions was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid organic - inorganic nanocomposites doped with Fe-II and Fe-III ions and exhibiting interesting magnetic properties have been obtained by the sol - gel process. The hybrid matrix of these ormosils ( organically modified silicates), classed as di-ureasils and termed U( 2000), is composed of poly( oxyethylene) chains of variable length grafted to siloxane groups by means of urea crosslinkages. Iron perchlorate and iron nitrate were incorporated in the diureasil matrices, leading to compositions within the range 80 greater than or equal to n greater than or equal to 10, n being the molar ratio of ether-type O atoms per cation. The structure of the doped diureasils was investigated by small-angle X-ray scattering (SAXS). For Fe-II-doped samples, SAXS results suggest the existence of a two-level hierarchical structure. The primary level is composed of spatially correlated siloxane clusters embedded in the polymeric matrix and the secondary, coarser level consists of domains where the siloxane clusters are segregated. The structure of Fe-III-doped hybrids is different, revealing the existence of iron oxide based nanoclusters, identified as ferrihydrite by wide-angle X-ray diffraction, dispersed in the hybrid matrix. The magnetic susceptibility of these materials was determined by zero-field-cooling and field-cooling procedures as functions of both temperature and field. The different magnetic features between Fe-II- and Fe-III-doped samples are consistent with the structural differences revealed by SAXS. While Fe-II-doped composites exhibit a paramagnetic Curie-type behaviour, hybrids containing Fe-III ions show thermal and field irreversibilities.