12 resultados para oxygen affinity

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO(3)(-)]PI) and an elevation of arterial CO(2) partial pressure (P(aCO2)) and CO(2) content in the plasma (C(PlCO2)). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O(2) partial pressure (Pa(O2)) and O(2) content (Ca(O2)) were not affected by season and tended to increase with temperature. Arterial pH (pH(a)) of dormant animals is reduced compared to active lizards at body temperatures below 15 degreesC, while no significant difference was noticed at higher temperatures. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report here the first direct measurements of changes in protein hydration triggered by a functional binding. This task is achieved by weighing hemoglobin (Hb) and myoglobin films exposed to an atmosphere of 98%, relative humidity during oxygenation. The binding of the first oxygen molecules to Hb tetramer triggers a change in protein conformation, which increases binding affinity to the remaining empty sites giving rise to the appearance of cooperative phenomena. Although crystallographic data have evidenced that this structural change increases the protein water-accessible surface area, isobaric osmotic stress experiments in aqueous cosolutions have shown that water binding is linked to Hb oxygenation. Now we show that the differential hydration between fully oxygenated and fully deoxygenated states of these proteins, determined by weighing protein films with a quartz crystal microbalance, agree with the ones determined by osmotic stress in aqueous cosolutions, from the linkage between protein oxygen affinity and water activity. The agreements prove that the changes in water activity brought about by adding osmolytes to the buffer solution shift biochemical equilibrium in proportion to the number of water molecules associated with the reaction. The concomitant kinetics of oxygen and of water binding to Hb have been also determined. The data show that the binding of water molecules to the extra protein surface exposed on the transition from the low-affinity T to the high-affinity R conformations of hemoglobin is the rate-limiting step of Hb cooperative reaction. This evidences that water binding is a crucial step on the allosteric mechanism regulating cooperative interactions, and suggests the possibility that environmental water activity might be engaged in the kinetic control of some important reactions in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hemoglobinas variantes com afinidade anormal ao oxigênio têm sido encontradas em várias partes do mundo. Pela sua afinidade ao oxigênio, estas hemoglobinas variantes têm sido classificadas e 15 variantes com baixa afinidade relatadas. Numerosas hemoglobinas mutantes com afinidade anormal têm também sido relatadas, mas somente poucos casos de Hemoglobina Kansas. Os casos são de pacientes procedentes do Japão, ou de famílias com descendentes japoneses. Neste relato descrevemos um paciente com manifestações de cianose que teve o seu diagnóstico confirmado através da eletroforese.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports the results obtained using the osmotic stress method applied to the purified cathodic and anodic hemoglobins (Hbs) from the catfish Hoplosternum littorale, a species that displays facultative accessorial air oxygenation. We demonstrate that water potential affects the oxygen affinity of H. littorale Hbs in the presence of an inert solute (sucrose). Oxygen affinity increases when water activity increases, indicating that water molecules stabilize the high-affinity state of the Hb. This effect is the same as that observed in tetrameric vertebrate Hbs. We show that both anodic and cathodic Hbs show conformational substrates similar to other vertebrate Hbs. For both Hbs, addition of anionic effectors, especially chloride, strongly increases the number of water molecules bound, although anodic Hb did not exhibit sensitivity to saturating levels of ATP. Accordingly, for both Hbs, we propose that the deoxy conformations coexist in at least two anion-dependent allosteric states, T-o and T-x, as occurs for human Hb. We found a single phosphate binding site for the cathodic Hb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of anions on the stability of different functional conformations of Hb is examined through the determination of the dependence of O-2 affinity on water activity (a(w)). The control of a(w) is effected by varying the sucrose osmolal concentration in the bathing solution according to the osmotic stress method. Thus, the hydration change following Hb oxygenation is determined as a function of Cl- and of DPG concentration. We find that only similar to 25 additional water molecules bind to human Hb during the deoxy-to-oxy conformation transition in the absence of anions, in contrast with similar to 72 that bind in the presence of more than 50 mM Cl- or more than 15 mu M DPG. We demonstrate that the increase in the hydration change linked with oxygenation is coupled with anion binding to the deoxy-Hb. Hence, we propose that the deoxy-Hb coexists in two allosteric conformations which depend on whether anion is bound or not: the tense T-state, with low oxygen affinity and anion bound, or a new allosteric P-state, with intermediate oxygen affinity and free of bound anions. The intrinsic oxygen affinity of this unforeseen P-state and the differential binding of Cl-, DPG, and H2O between states P and T and P and R are characteristics which are consistent with those expected for a putative intermediate allosteric state of Hb. These findings represent a new opportunity to explore the structure-function relationships of hemoglobin regulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, initial crystallographic studies of human haemoglobin (Hb) crystallized in isoionic and oxygen-free PEG solution are presented. Under these conditions, functional measurements of the O-2-linked binding of water molecules and release of protons have evidenced that Hb assumes an unforeseen new allosteric conformation. The determination of the high-resolution structure of the crystal of human deoxy-Hb fully stripped of anions may provide a structural explanation for the role of anions in the allosteric properties of Hb and, particularly, for the influence of chloride on the Bohr effect, the mechanism by which Hb oxygen affinity is regulated by pH. X-ray diffraction data were collected to 1.87 Angstrom resolution using a synchrotron-radiation source. Crystals belong to the space group P2(1)2(1)2 and preliminary analysis revealed the presence of one tetramer in the asymmetric unit. The structure is currently being refined using maximum-likelihood protocols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hemolytic anemia and vasoocclusion are the cardinal clinical features of sickle cell anemia. Vasoocclusion is a complex process involving not only the polymerization of deoxygenated sickle hemoglobin tetramers, but also interactions between sickle erythrocytes, vascular endothelium, platelets, leukocytes, and plasma proteins. The increased adherence of sickle erythrocytes to endothelium has been implicated as an early step in vasoocclusion. Other researchers have focused on leukocytes and platelets which might also contribute to disturbed blood flow. Microvascular occlusion results in acute painful crises, whereas macrovascular occlusion seems to be the cause of organ failure. The anemia results from the markedly shortened circulatory survival of sickle erythrocytes, together with a limited erythropoietic response. The erythropoiesis increases intensively, but it is not enough to balance the increased rate of erythrocytes destruction to maintain normal levels of total erythrocytes and hemoglobin concentrations; mainly by the low oxygen affinity of hemoglobin S and increased 2,3-Diphosphoglycerate. It is very difficult to separate processes leading to anemia or to vasoocclusion. Understanding the involvement of multiple blood componentes in vasoocclusion may elucidate the clinical manifestations and complications of sickle cell anemia, and may give new insights into the preventive and curative therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have previously proposed a role of hydration in the allosteric control of hemoglobin based on the effect of varying concentrations of polyols and polyethers on the human hemoglobin oxygen affinity and on the solution water activity (Colombo, M. F., Rau, D. C., and Parsegian, V. A. (1992) Science 256, 655-659). Here, the original analyses are extended to test the possibility of concomitant solute and water allosteric binding and by introducing the bulk dielectric constant as a variable in our experiments. We present data which indicate that glycine and glucose influence HbA oxygen affinity to the same extent, despite the fact that glycine increases and glucose decreases the bulk dielectric constant of the solution. Furthermore, we derive an equation linking changes in oxygen affinity to changes in differential solute and water binding to test critically the possibility of neutral solute heterotropic binding. Applied to the data, these analyses support our original interpretation that neutral solutes act indirectly on the regulation of allosteric behavior of hemoglobin by varying the chemical potential of water in solution. This leads to a displacement of the equilibrium between Hb conformational states in proportion to their differential hydration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of nickel from soluble NiCl2 on Cu-Zn superoxide dismutase (SOD) activity, as well as on rate of nitro blue tetrazolium reduction, was studied in vitro since lipid peroxidation has been implicated in cell damage by nickel insoluble compounds, whose toxicity and carcinogenicity are well established. The physical and chemical nature of nickel compounds is one of the key determinations of its toxicity. Soluble nickel freely enter cells, but is just as readily excreted reducing the opportunity for production of lipid damage. Nickel from NiCl2 strongly activated SOD activity. In vitro addition of nickel chloride to a crude lung preparation altered the KM for SOD without changing the Vmax. Nickel chloride produced increased enzyme affinity to the substrate, because decreased (O2-) concentration that yields half-maximal velocity. The combination of nickel and SOD may contribute to stabilization of the particular conformation of SOD responsible for maximal catalytically activity.