156 resultados para coalescent theory, effective dispersal, gene flow, habitat loss, microsatellite DNA, Orthonyx temminckii

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lake from Porto-Primavera hydroelectric power station inundated an area of 2,200 km2 at the border of São Paulo and Mato-Grosso do Sul States, Brazil. Infestations by ticks were evaluated on 135 marsh deer, Blastocerus dichotomus (Illiger), captured before and after inundation. Ticks were collected for identification, and infestation level of animals was assessed by scoring. Deer were divided into four groups according to capture location and temporal relation to the inundation. Groups 1, 2, and 3 were captured before inundation. Group 4 was captured after inundation. Four tick species were found: Amblyomma cajennense (F.), Amblyomma triste Koch, Anocentor nitens (Neumann), and Boophilus microplus (Canestrini). Groups 1, 2, 3, and 4 had 30, 45, 100, and 96%, respectively, of animals carrying B. microplus ticks. A. triste was observed on 16, 22, 22, and 88% of animals from groups 1,2,3, and 4, respectively. A. nitens and A. cajennense were observed only on group 4, on 32 and 16% of the animals, respectively. Groups 1 and 2 had only 4.8 and 6.1% of animals with high infestation levels, respectively, and no ticks on 46.8% and 45.5% of the animals, respectively. Conversely, groups 3 and 4 lacked noninfested animals and had high infestation levels on 77.8 and 50% of deer, respectively. Marsh area shrinkage was blamed for higher infestation levels on deer from groups 3 and 4. The widespread presence of A. triste on marsh deer, a Neotropical tick species, raises the possibility of a natural host-parasite relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the genetic structure of tropical bird populations is important for assessing potential genetic effects of future habitat fragmentation and for testing hypotheses about evolutionary mechanisms promoting diversification. Here we used 10 microsatellite DNA loci to describe levels of genetic differentiation for five populations of the lek-mating blue manakin (Chiroxiphia caudata), sampled along a 414-km transect within the largest remaining continuous tract of the highly endangered Atlantic Forest habitat in southeast Brazil. We found small but significant levels of differentiation between most populations. F-ST values varied from 0.0 to 0.023 (overall F-ST = 0.012) that conformed to a strong isolation by distance relationship, suggesting that observed levels of differentiation are a result of migration-drift equilibrium. N(e)m values estimated using a coalescent-based method were small (<= 2 migrants per generation) and close to the minimum level required to maintain genetic similarity between populations. An implication of these results is that if future habitat fragmentation reduces dispersal between populations to even a small extent, then individual populations may undergo a loss of genetic diversity due to an increase in the relative importance of drift, since inbreeding effective population sizes are relatively small (N-e similar to 1000). Our findings also demonstrate that population structuring can occur in a tropical bird in continuous habitat in the absence of geographical barriers possibly due to behavioural features of the species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

About 45 palm species occur in the Atlantic forest of Brazil, and most of them are affected by loss of seed dispersers resulting from forest fragmentation and hunting. Here we report the effects of habitat loss and defaunation on the seed dispersal system of an endemic palm, Astrocaryum aculeatissimum. We evaluated seed removal, insect and rodent seed predation, and scatter-hoarding in nine sites, ranging from 19 ha to 79 000 ha. We report the seedling, juvenile and adult palm densities in this range of sites. Endocarps remaining beneath the parent palm had a higher probability of being preyed upon by insects in small, mostly fragmented and more defaunated sites. The frequency of successful seed removal, scatter-hoarding and consumption by rodents increased in the larger, less defaunated sites. Successful removal and dispersal collapsed in small (< 1000 ha), highly defaunated sites and frequently resulted in low densities of both seedlings and juveniles. Our results indicate that a large fraction of Atlantic forest palms that rely on scatter-hoarding rodents may become regionally extinct due to forest fragmentation and defaunation. Current management practices including palm extraction and hunting pressure have a lasting effect on Atlantic forest palm regeneration by severely limiting successful recruitment of prereproductive individuals.(c) 2006 the Linnean Society of London.