18 resultados para Structural Failure

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the application of artificial immune systems for analysis of the structural integrity of a building. Inspired by a biological process, it uses the negative selection algorithm to perform the identification and characterization of structural failure. This paper presents the application of artificial immune systems for analysis of the structural integrity of a building. Inspired by a biological process, it uses the negative selection algorithm to perform the identification and characterization of structural failure. This methodology can assist professionals in the inspection of mechanical and civil structures, to identify and characterize flaws, in order to perform preventative maintenance to ensure the integrity of the structure and decision-making. In order to evaluate the methodology was made modeling a two-story building and several situations were simulated (base-line condition and improper conditions), yielding a database of signs, which were used as input data for the negative selection algorithm. The results obtained by the present method efficiency, robustness and accuracy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the application of artificial neural networks in the analysis of the structural integrity of a building. The main objective is to apply an artificial neural network based on adaptive resonance theory, called ARTMAP-Fuzzy neural network and apply it to the identification and characterization of structural failure. This methodology can help professionals in the inspection of structures, to identify and characterize flaws in order to conduct preventative maintenance to ensure the integrity of the structure and decision-making. In order to validate the methodology was modeled a building of two walk, and from this model were simulated various situations (base-line condition and improper conditions), resulting in a database of signs, which were used as input data for ARTMAP-Fuzzy network. The results show efficiency, robustness and accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a system for aircraft structural health monitoring based on artificial immune systems with negative selection. Inspired by a biological process, the principle of discrimination proper/non-proper, identifies and characterizes the signs of structural failure. The main application of this method is to assist in the inspection of aircraft structures, to detect and characterize flaws and decision making in order to avoid disasters. We proposed a model of an aluminum beam to perform the tests of the method. The results obtained by this method are excellent, showing robustness and accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studies the capability of generalization of Neural Network using vibration based measurement data aiming at operating condition and health monitoring of mechanical systems. The procedure uses the backpropagation algorithm to classify the input patters of a system with different stiffness ratios. It has been investigated a large set of input data, containing various stiffness ratios as well as a reduced set containing only the extreme ones in order to study generalizing capability of the network. This allows to definition of Neural Networks capable to use a reduced set of data during the training phase. Once it is successfully trained, it could identify intermediate failure condition. Several conditions and intensities of damages have been studied by using numerical data. The Neural Network demonstrated a good capacity of generalization for all case. Finally, the proposal was tested with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sphingomyelinases D (SMases D) from Loxosceles spider venom are the principal toxins responsible for the manifestation of dermonecrosis, intravascular hemolysis, and acute renal failure, which can result in death. These enzymes catalyze the hydrolysis of sphingomyelin, resulting in the formation of ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidyl choline, generating the lipid mediator lysophosphatidic acid. This report represents the first crystal structure of a member of the sphingomyelinase D family from Loxosceles laeta (SMase I), which has been determined at 1.75-angstrom resolution using the quick cryo-soaking technique and phases obtained from a single iodine derivative and data collected from a conventional rotating anode x-ray source. SMase I folds as an (alpha/beta)(8) barrel, the interfacial and catalytic sites encompass hydrophobic loops and a negatively charged surface. Substrate binding and/or the transition state are stabilized by a Mg2+ ion, which is coordinated by Glu(32), Asp(34), Asp(91), and solvent molecules. In the proposed acid base catalytic mechanism, His(12) and His(47) play key roles and are supported by a network of hydrogen bonds between Asp(34), Asp(52), Trp(230), Asp(233), and Asn(252).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To determine the influence of cement thickness and ceramic/cement bonding on stresses and failure of CAD/CAM crowns, using both multi-physics finite element analysis and monotonic testing.Methods. Axially symmetric FEA models were created for stress analysis of a stylized monolithic crown having resin cement thicknesses from 50 to 500 mu m under occlusal loading. Ceramic-cement interface was modeled as bonded or not-bonded (cement-dentin as bonded). Cement polymerization shrinkage was simulated as a thermal contraction. Loads necessary to reach stresses for radial cracking from the intaglio surface were calculated by FEA. Experimentally, feldspathic CAD/CAM crowns based on the FEA model were machined having different occlusal cementation spaces, etched and cemented to dentin analogs. Non-bonding of etched ceramic was achieved using a thin layer of poly(dimethylsiloxane). Crowns were loaded to failure at 5 N/s, with radial cracks detected acoustically.Results. Failure loads depended on the bonding condition and the cement thickness for both FEA and physical testing. Average fracture loads for bonded crowns were: 673.5 N at 50 mu m cement and 300.6 N at 500 mu m. FEA stresses due to polymerization shrinkage increased with the cement thickness overwhelming the protective effect of bonding, as was also seen experimentally. At 50 mu m cement thickness, bonded crowns withstood at least twice the load before failure than non-bonded crowns.Significance. Occlusal "fit" can have structural implications for CAD/CAM crowns; pre-cementation spaces around 50-100 mu m being recommended from this study. Bonding benefits were lost at thickness approaching 450-500 mu m due to polymerization shrinkage stresses. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper evaluates the applicability of products of remote sensing in studies related to the structural conditionings of slope stability in saprolites, usually conducted through field surveys. In this article we use a regional approach concentrating on an area of lane duplication of a major highway. In that area, resistance reduction to stress and the low cohesions of muscovite saprolites - schists and gneiss which are associated to geological discontinuities, all result in inumerous instabilities. The joints and foliations were extracted from satellite images as well as aerial photographs. Following that, the study area was divided into various sectors based on the directions and dips of the foliation. Different relationships between the structures and the slopes were analyzed in order to indicate the most feasible type of slope failure in each sector of analysis. The aim of the study is to subsidize further detailed future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the importance of daily free activity in the cage and body weight gain during the recovering of bone structural and mechanical properties in growing rats after hindlimb unloading. Eight-week-old male Wistar rats were randomly divided into control (CG, n=24) and suspended (SG, n=24) groups. Animals from SG underwent a four-week hindlimb unloading period by tail-suspension. Animals from CG and those from SG after release were kept in collective cages and sacrificed at the age of 12, 16 and 20 weeks. Both femurs were removed and its area, bone mineral density (BMD), resistance to failure and stiffness were determined. Four-week hindlimb unloading decreased (p < 0.05) body weight (CG, 373.00 +/- 9.47 vs. SG, 295.86 +/- 9.19 g), BMD (CG, 0.19 +/- 0.01 vs. SG, 0.15 +/- 0.01 g/cm(2)), bone resistance to failure (CG, 147.75 +/- 5.05 vs. SG, 96.40 +/- 5.95 N) and stiffness (CG, 0.38 +/- 0.01 vs. SG, 0.23 +/- 0.02 N/m). Eight weeks of free activity in cage recovered (p > 0.05) the body weight (CG, 472.75 +/- 14.11 vs. SG, 444.75 +/- 18.91 g), BMD (CG, 0.24 +/- 0.01 vs. SG, 0.22 +/- 0.01 g/cm(2)), bone resistance to failure (CG, 195.73 +/- 10.06 vs. SG, 178.45 +/- 8.48 N) and stiffness (CG, 0.56 +/- 0.02 vs. SG, 0.47 +/- 0.03 N/m) of SG animals. Body weight correlated strongly with bone structural and mechanical properties (p < 0.0001). In conclusion, free activity in the cage associated with body weight gain restored bone structural and mechanical properties in growing rats after hindlimb unloading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a comparative analysis about the behaviour of pile caps supported by 3 piles subjected to axial loading. Piles with 20 cm and 30 cm diameters were analysed. The main reinforcement was maintained in all the specimens, however, the arrangement of the secondary reinforcement varied. The main reinforcement consisted of steel bars connecting the piles. The secondary reinforcement was made up of: (a) bars going through the piles and through the projection of the column, (b) bars forming a network, and (c) vertical and horizontal stirrups. The main objective was the observation of the pile cap behaviour regarding the cracks and the modes of rupture. The real scale specimens were subjected to experimental tests until failure by rupture. Instruments were placed with the aim to obtain the displacement of the bases, the strains in the main and secondary reinforcement bars, in the compression struts, in the lower and upper nodal zones and in the sides of the caps. None of the caps reached failure by rupture with a load less than 1.12 times the theoretical load. The specimens ruptured due to the cracking of the compression strut and/or the yielding of the reinforcement bars in one direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, several studies were conducted on the gastrointestinal changes associated to chronic heart failure. This article presents a literature review on the physiopathology and clinical consequences of pathological digestive changes of heart failure patients. Structural and functional abnormalities of the gastrointestinal tract, such as edema of absorptive mucosa and intestinal bacterial overgrowth, have been leading to serious clinical consequences. Some of these consequences are cardiac cachexia, systemic inflammatory activation and anemia. These conditions, alone or in combination, may lead to worsening of the pre-existing ventricular dysfunction. Although currently there is no therapy specifically earmarked for gastrointestinal changes associated to heart failure, the understanding of digestive abnormalities is germane for the prevention and management of systemic consequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.