164 resultados para Root growth

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the allelochemicals ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities and their relationships with phenolic acid (PhAs) contents and root growth of soybean (Glycine max (L.) Merr.) were examined. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.1 to 1 mM) for 48 h. Both compounds (at 0.5 and 1 mM) decreased root length (RL), fresh weight (FW) and dry weight (DW) and increased PhAs contents. At 0.5 and 1 mM, FA increased soluble POD activity (18% and 47%, respectively) and cell wall (CW)-bound POD activity (61% and 34%), while VA increased soluble POD activity (33% and 17%) but did not affect CW-bound POD activity. At I mM, FA increased (82%) while VA reduced (32%) PAL activities. The results are discussed on the basis of the role of these compounds on phenylpropanoid metabolism and root growth and suggest that the effects caused on POD and PAL activities are some of the many mechanisms by which allelochemicals influence plant growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of triple superphosphate (TS) and liming on macronutrient accumulation and root growth of Pioneer 3072 and Cargill 505 com hybrids were studied. Com plants were grown up to 30 days in pots with 7 L of a dark red Latosol sandy loam (Haplortox). Lime was applied to raise base saturation to 30, 50, and 70%, in two levels of phosphorus (P) fertilization with TS (0 and 200 ppm P). There was an increase in root surface due to lime only in pots without TS, with no effects on plant growth or nutrition. Both com hybrids responded to P fertilization, but Pioneer yielded more dry matter than Cargill. The roots of Cargill were thicker and, when in TS presence, were longer and had a larger surface than Pioneer. There was an increase in macronutrient uptake in the P fertilized pots. Pioneer required more nutrients and showed a higher efficiency in acquiring and utilizing the nutrients from the soil. A higher response of Pioneer in dry matter and nutrient acquisition was more related to the physiological efficiency than to root morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil columns were produced by filling PVC tubes with a Dark Red Latosol (Acrortox, 22% of clay). A compacted layer was established at the depth of 15 cm in the columns. In the compacted layer, soil was packed to 1.13, 1.32, 1.48, and 1.82 Mg kg(-1), resulting in cone resistances of 0.18, 0.43, 1.20, and 2.50 MPa. Cotton was cropped for 30 days. Lime was applied to raise base saturation to 40, 52, and 67%. The highest base saturation caused a decrease in phosphorus (P) and zinc (Zn) concentrations in the plants. A decrease in root dry matter, length and surface area was also observed. This could be a consequence of lime induced Zn deficiency. Root growth was decreased in the compacted layer, and complete inhibition was noticed at 2.50 MPa. Once the roots got through the compacted layer, there was a growth recovery in the bottom layer of the pots. The increase in base saturation up 52% was effective in preventing a decrease in cotton root length at soil resistances to 1.20 MPa. Where the roots were shorter, there was an increase in nutrient uptake per unit of root surface area, which kept the plants well nourished, except for P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil compaction has a negative effect and Ca was shown to enhance root growth. The effects of soil subsurface compaction and liming on root growth and nutrient uptake by soybean were studied at the Department of Agriculture and Plant Breeding, São Paulo State University, Brazil. A Dark Red Latosol, sandy loam (Haplortox) was limed to raise base saturations to 40.1, 52.4 and 66.7%. The experimental pots were made of PVC tubes with 100 mm of diameter. Three rings with 150, 35 and 150 mm long were fixed one on the top of the other. In the central ring of 35 mm, the soil was compacted to bulk densities of 1.06, 1.25, 1.43 and 1.71 g.cm(-3). There was no effect of base saturation on soybean root and shoot growth and nutrition. Subsurface compaction led to an increase in root growth in the superficial layer of the pots with a correspondent quadratic decrease in the compacted layer. There was no effect of subsoil compaction on total root length and surface, soybean growth and nutrition. Soybean root growth was decreased by 10% and 50% when the soil penetrometer resistances were 0.52 MPa (bulk density of 1.45 g.cm(-1)) and 1.45 MPa (bulk density of 1.69 g.cm(-3)), respectively. In spite of the poor root growth in the compacted layer, once it nas overcome the root system showed an almost complete recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toxic levels of Al and low availability of Ca have been shown to decrease root growth, which can also be affected by P availability. In the current experiment, initial plant growth and nutrition of cotton (Gossypium hirsutum var. Latifolia) were studied as related to its root growth in response to phosphorus and lime application. The experiment was conducted in Botucatu, Sao Paulo, Brazil, in pots containing a Dark Red Latosol (Acrortox, 20% clay, 72% sand). Lime was applied at 0.56, 1.12 and 1.68 g kg -1 and phosphorus was applied at 50, 100 and 150 mg kg -1. Two cotton (cv. IAC 22) plants were grown per pot for up to 42 days after plant emergence. There was no effect of liming on shoot dry weight, root dry matter yield, root surface and length, but root diameter was decreased with the increase in soil Ca. Shoot dry weight, as well as root length, surface and dry weight were increased with soil P levels up to 83 mg kg -1. Phosphorus concentration in the shoots was increased from 1.6 to 3.0 g kg -1 when soil P was increased from 14 to 34 mg kg -1. No further increases in P concentration were observed with higher P rates. The shoot/root ratio was also increased with P application as well as the amount of nutrients absorbed per unit of root surface. In low soil P soils the transport of the nutrient to the cotton root surface limits P uptake. In this case an increase in root growth rate due to P fertilisation does not compensate for the low P diffusion in the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crop rotation using cover crops with vigorous root systems may be a tool to manage soils with some degree of compaction. Root and shoot growth as well as nutrient accumulation by summer species suitable for crop rotation in tropical areas were studied at different subsoil compaction levels. Crotalaria juncea (Indian hemp), Crotalaria spectabilis (showy crotalaria), Helianthus annuus (sunflower), Pennisetum americanum (pearl millet) and Sorghum bicolor (guinea sorghum) were grown for 40 days in pots 33.5 cm high with 10 cm internal diameter. Soil in the pots had uniform bulkdensity of 1.25 Mg m-3 for the top and bottom 15 cm sections. Bulk densities of 1.31, 1.43, 1.58 and 1.70 Mg m-3 Were established in the 3.5 cm middle section. H. annuus and P. americanum had the highest early macronutrient accumulation. The grasses S. bicolor and P. americanum yielded twice as much shoot dry matter as the other species. Root growth generally decreased with increasing soil bulk density with C. spectabilis less affected than other species. Although the grasses were more sensitive to high soil penetration resistance, they showed higher root length densities at all compaction levels. P. americanum had the highest potential to be used as cover crop due to its high root density at high soil penetration resistances, vegetative vigour and ability to accumulate macronutrients. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estudou-se o efeito do tratamento de sementes de algodão com cloreto de mepiquat sobre o crescimento inicial de raízes e parte aérea. O experimento, realizado em casa de vegetação, utilizou vasos de PVC adaptados com uma parede frontal de vidro e os tratamentos foram constituídos por cinco doses do cloreto de mepiquat (CM) do ingrediente ativo (i.a.): 0, 3, 6, 9 e 12 g kg-1 de sementes, pulverizado sobre as sementes, e a cultivar FM 993. Massa de matéria seca da parte aérea (folhas, pecíolos e haste), massa de matéria seca da raiz, área foliar, relação parte aérea:raiz, relação área foliar:crescimento radicular, o comprimento da parte aérea foram avaliados aos 21 dias após a semeadura. Crescimento radicular foi avaliado a cada três dias até os 18 dias. O CM aplicado às sementes do algodão promove redução da altura da planta e da área foliar, sem, contudo, afetar produção de massa de matéria seca da parte aérea e raiz, relação parte aérea:raiz, relação área foliar:crescimento radicular e comprimento total de raízes do algodoeiro. Assim, no presente experimento não foi observado efeito negativo do CM aplicado às sementes do algodoeiro na absorção de água pela planta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A toxicidade do alumínio (Al) é um dos fatores mais limitantes para a produtividade. Esta pesquisa foi realizada para avaliar a influência do Al, em solução nutritiva, na altura de plantas, no peso da matéria seca e nas alterações morfoanatômicas de raízes e folhas de milho (Zea mays L.). O experimento foi conduzido em casa de vegetação com tratamentos constituídos de cinco doses de Al (0; 25; 75; 150; e 300 µmol L-1) e seis repetições. As soluções foram constantemente aeradas e o pH foi ajustado a 4,3, inicialmente. A matéria seca da parte aérea e das raízes e a altura das plantas diminuíram significativamente com o aumento da concentração de Al. As raízes de plantas de milho cultivadas em soluções com Al tiveram seu crescimento inibido e apresentaram menos raízes laterais e desenvolvimento do sistema radicular inferior, em comparação com as das plantas-controle. As folhas das plantas crescidas em soluções que continham 75 e 300 µmol L-1 de Al não apresentaram muita diferença anatômica em relação às das plantas-controle. A bainha da folha das plantas exposta ao Al apresentou epiderme uniestratificada revestida por uma fina camada de cutícula e as células da epiderme e do córtex foram as que menos se desenvolveram. No feixe vascular, o metaxilema e protoxilema não tinham paredes secundárias, e o diâmetro de ambos foi muito menor quando comparado com os das plantas-controle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The allelopathic potential of leaf extracts from the medicinal plant Myrcia guianensis (Aubl.) DC. was studied in Petri dish bioassays on sorghum and determined the seed germination, germination rate index (GRI), root growth, secondary root number, the genes involved in root development (SHR, PHB, PHV and REV) and microRNA 166 that regulates these genes. The hydroalcoholic extract was more inhibitory than methanol extract (moderate inhibition) and aqueous extract at 25 and 100% concentration were least inhibitory. Application of higher dose of hydroalcoholic M. guianenesis leaf extracts on sorghum seeds, inhibited the root development and changed the expression of SHR and PHB genes and microRNA 166. This suggested that the expression of these genes could be indicator of allelopathic potential for inhibition of root development in sorghum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of nitrogen on the root system of the species Panicum maximum Jacq. cv. IPR-86 Mil (e) over cap nio, under grazing, was evaluated. The N rates were 0; 150; 300 and 450 kg/ha. year. The root density was evaluated during pregrazing at five years of successive N application, in three depths (0-10; 10-20 and 20-40 cm) and the root growth at 7, 14, 21, and 35 days after grazing. The grazing method adopted was rotational stocking. Root length and root mass densities in pre-and post-grazing presented maximum values at rates 204, 206, 192, and 197 kg/ha of N, respectively. The root growth (in root length density) increased, on average, until 29 days after grazing at rates 0, 150, and 300 kg/ha; at 450 kg/ha N rate, the increase was linear. Independently of N rates, around 60 and 25% of IPR-86 Mil (e) over cap nio cultivar root system was concentrated in 0-10 and 10-20 cm depth, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There have been some responses of peanut roots to phosphorus. An experiment was carried out to study peanut root growth and distribution as related to P in the soil. The cultivars Tatu, Oira and Tup4 and the lines FCA 170 and FCA 265 were grown with or without P fertilization with 80 kg P2O5/ha, as triple superphosphate. The fertilizer was applied in the seed furrows. There was higher P contents in the 0-10 cm layer of the soil 36 days after P application. At 66 and 98 days after application, P contents of the soil were increased by fertilization down to 15 cm. There was no response of peanut roots to P fertilization. Oira showed the highest root lenght density and Tatu the lowert. There was a root concentration the first 15 cm of the soil. Oira with the largest root system showed the lowest P absorption, and Tatu, with the smallest root system absorbed as much P as the others.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The knowledge of nutrient mobility is an important tool to define the best fertilizer management and diagnosis techniques. Patterns of boron (B) mobility in plants have been reviewed, but there is very little information on B distribution and mobility in cotton. An experiment was conducted to study plant growth and B distribution in cotton when the nutrient was applied in the nutrient solution or to the leaves, and when a temporary deficiency was imposed. Cotton (Gossypium hirsutum, Latifolia, cv. IAC 22) was grown in nutrient solutions where B was omitted or not for 15 days. Boron was applied to young or mature cotton leaves in some of the minus B treatments. Root growth decreased when the plants were transferred to B solutions, but there was a full recovery when B was replaced in the nutrient medium. Boron deficiency, even when temporary, reduced cotton shoot dry matter yields, plant height and flower and fruit set, and these could not be prevented by foliar application of B. Because of decreased dry matter production, leaves of deficient cotton plants actually showed higher B concentrations than non deficient leaves. This would be misleading when a mature leaf is sampled for diagnosis. If there is any B mobility in cotton phloem, it is very low.