5 resultados para Orthobunyavirus

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oropouche, Caraparu, Guama, Guaroa and Tacaiuma viruses (Orthobunyavirus genus) cause human febrile illnesses and/or encephalitis. To achieve a therapeutical agent to prevent and/or treat these diseases we evaluated the antiviral action of Interferon-alpha (IFN-alpha) on these orthobunyaviruses. In vitro results showed that all the studied orthobunyaviruses are susceptible to antiviral action of IFN-alpha, but this susceptibility is limited and dependent on both concentration of drug and treatment period. In vivo results demonstrated that IFN-alpha present antiviral action on Oropouche and Guaroa viruses when used as a prophylactic treatment. Moreover, a treatment initiated 3 It after infection prevented the death of Guaroa virus infected-mice. Additionally, mortality of mice was related to the migration and replication of viruses in their brains. Our results suggest that IFN-alpha could be potentially useful in the prevention of diseases caused by Oropouche virus and in the prevention and/or treatment of diseases caused by Guaroa virus. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Oropouche, Caraparu, Guama, Guaroa and Tacaiuma are ssRNA viruses that belong to the genus Orthobunyavirus and have been associated with human febrile illnesses and/or encephalitis. In this study, we evaluated the antiviral action of mycophenolic acid (MPA) on these orthobunyaviruses to achieve a therapeutic agent to treat the diseases caused by these viruses. Methods: the in vitro antiviral evaluation to MPA was done by using plaque assay at different periods of treatment. Results: Results showed that MPA at a concentration of 10 mu g/ml has significant antiviral activity on Tacaiuma virus when treatment was initiated either 24 h before or 2 h after viral infection. Moreover, MPA has an inhibitory effect on Guama virus replication, but only when treatment was initiated before cell infection. Addition of guanosine in the culture reverted the inhibitory effect of MPA on Tacaiuma and Guama viruses, suggesting that the antiviral activity of this substance was via depletion of the intracellular guanosine pool. Conclusion: Our results suggest that MPA would not be a good therapeutic agent to treat the diseases caused by Oropouche, Caraparu, Guama, Guaroa, and Tacaiuma viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia - IBILCE