68 resultados para Organelle biogenesis

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to evaluate the correlation between the motile sperm organelle morphology examination (MSOME) and a well-known sperm morphology classification (Tygerberg criteria). For MSOME, spermatozoa were analysed at x8400 magnification by inverted microscope equipped with Nomarski differential interference contrast optics, Uplan Apo x 100 oil/1.35 objective lens and variable zoom lens. By Tygerberg criteria, the semen underwent morphological evaluation as described in the literature. Regression analysis demonstrated significant positive correlation between percentage of normal sperm forms by Tygerberg criteria and by MSOME (r = 0.83, P < 0.0001). However, the incidence of normal spermatozoa by Tygerberg criteria (9.4%) was significantly higher (P < 0.0001) than under MSOME (3.3%). Despite the highly positive correlation, MSOME is a much stricter criterion of sperm morphology classification, since it identifies vacuoles and chromatin abnormalities that are not evaluated with the same precision by the analysis of Tygerberg criteria. MSOME should be included among the routine criteria for semen analysis. In addition, MSOME should be used for selection of spermatozoa for intracytoplasmic sperm injection based on the already published literature, as this is a good selection tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regression analysis of 538 semen samples demonstrated that percentages of normal nuclear sperm and all spermatozoa with abnormalities of nuclear form at high magnification had significant negative correlation with percentages of DNA fragmentation. on the other hand, there was a positive correlation between percentages of spermatozoa with nuclear vacuoles and those with DNA fragmentation. (Fertil Steril (R) 2010;94:1937-40. (C) 2010 by American Society for Reproductive Medicine.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To (1) analyze possible relationships between motile sperm organelle morphology examination (MSOME) and sperm chromatin status, aneuploidy incidence, and patient's age; (2) determine the effects of sperm morphologic abnormalities on intracytoplasmic sperm injection (ICSI) outcomes; and (3) identify the benefits of intracytoplasmic morphologically selected sperm injection (IMSI) in patients with high DNA fragmentation rate.METHODS The study was performed in 50 patients undergoing ICSI cycles. The MSOME, sperm DNA fragmentation, and sperm aneuploidy incidence were performed in 200 sperm cells of each patient. Regression models were used to assess the relationships among sperm morphology and sperm aneuploidy, sperm DNA fragmentation, patient's age, and ICSI outcomes. In cycles with patients showing a high incidence of DNA fragmentation, oocytes were split into 2 groups according to the sperm selection method: Standard-ICSI (n = 82) and IMSI (n = 79). Fertilization and high-quality embryo rates were compared between the groups.RESULTS A close relationship between sperm DNA fragmentation and the presence of vacuoles in the MSOME was noted. The patient's age was correlated to the presence of vacuoles. No correlation between sperm aneuploidy and IMSI was observed. Vacuolated cells were negatively correlated with fertilization, pregnancy, and implantation. In patients with a high incidence of sperm DNA fragmentation, fertilization and high-quality embryo rates were similar when comparing IMSI and Standard-ICSI.CONCLUSIONS Our data demonstrate a correlation between paternal age and the incidence of nuclear vacuoles, as well as an effect of large and small vacuoles on late embryo development. UROLOGY 78: 786-791, 2011. (C) 2011 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Although the motile sperm organelle morphology examination (MSOME) was developed only as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in evaluation of semen quality, with potential clinical repercussions. The present study aimed to evaluate individual variations in the motile sperm organelle morphology examination (MSOME) analysis after a time interval.Methods: Two semen samples were obtained from 240 men from an unselected group of couples undergoing infertility investigation and treatment. Mean time interval between the two semen evaluations was 119 +/- 102 days. No clinical or surgical treatment was realized between the two observations. Spermatozoa were analyzed at greater than or equal to 8400 x magnification by inverted microscope equipped with DIC/Nomarski differential interference contrast optics. At least 200 motile spermatozoa per semen sample were evaluated and percentages of normal spermatozoa and spermatozoa with large nuclear vacuoles (LNV/one or more vacuoles occupying >50% of the sperm nuclear area) were determined. A spermatozoon was classified as morphologically normal when it exhibited a normal nucleus (smooth, symmetric and oval nucleus, width 3.28 +/- 0.20 mu m, length 4.75 +/- 0.20 mu m/absence of vacuoles occupying >4% of nuclear area) as well as acrosome, post-acrosomal lamina, neck and tail, besides not presenting cytoplasm around the head. One examiner, blinded to subject identity, performed the entire study.Results: Mean percentages of morphologically normal and LNV spermatozoa were identical in the two MSOME analyses (1.6 +/- 2.2% vs. 1.6 +/- 2.1% P = 0.83 and 25.2 +/- 19.2% vs. 26.1 +/- 19.0% P = 0.31, respectively). Regression analysis between the two samples revealed significant positive correlation for morphologically normal and for LNV spermatozoa (r = 0.57 95% CI: 0.47-0.65 P < 0.0001 and r = 0.50 95% CI: 0.38-0.58 P < 0.0001, respectively).Conclusions: The significant positive correlation and absence of differences between two sperm samples evaluated after a time interval with respect to normal morphology and LNV spermatozoa indicated that MSOME seems reliable (at least for these two specific sperm forms) for analyzing semen. The present result supports the future use of MSOME as a routine method for semen analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Although the motile sperm organelle morphology examination (MSOME) was developed merely as a selection criterion, its application as a method for classifying sperm morphology may represent an improvement in the evaluation of semen quality. The aim of this study was to determine the prognostic value of normal sperm morphology using MSOME with regard to clinical pregnancy (CP) after intrauterine insemination (IUI).Methods: A total of 156 IUI cycles that were performed in 111 couples were prospectively analysed. Each subject received 75 IU of recombinant FSH every second day from the third day of the cycle. Beginning on the 10th day of the cycle, follicular development was monitored by vaginal ultrasound. When one or two follicles measuring at least 17 mm were observed, recombinant hCG was administered, and IUI was performed 12-14 h and 36-40 h after hCG treatment. Prior to the IUI procedure, sperm samples were analysed by MSOME at 8400x magnification using an inverted microscope that was equipped with DIC/Nomarski differential interference contrast optics. A minimum of 200 motile spermatozoa per semen sample were evaluated, and the percentage of normal spermatozoa in each sample was determined.Results: Pregnancy occurred in 34 IUI cycles (CP rate per cycle: 21.8%, per patient: 30.6%). Based on the MSOME criteria, a significantly higher percentage of normal spermatozoa was found in the group of men in which the IUI cycles resulted in pregnancy (2.6+/-3.1%) compared to the group that did not achieve pregnancy (1.2+/-1.7%; P = 0.019). Logistic regression showed that the percentage of normal cells in the MSOME was a determining factor for the likelihood of clinical pregnancy (OR: 1.28; 95% CI: 1.08 to 1.51; P = 0.003). The ROC curve revealed an area under the curve of 0.63 and an optimum cut-off point of 2% of normal sperm morphology. At this cut-off threshold, using the percentage of normal sperm morphology by MSOME to predict pregnancy was 50% sensitive with a 40% positive predictive value and 79% specificity with an 85% negative predictive value. The efficacy of using the percentage of normal sperm morphology by MSOME in predicting pregnancy was 65%.Conclusions: The present findings support the use of high-magnification microscopy both for selecting spermatozoa and as a routine method for analysing semen before performing IUI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: This study aimed to investigate the influence of age on sperm quality, as analysed by motile sperm organelle morphology examination (MSOME).Methods: Semen samples were collected from 975 men undergoing evaluation or treatment for infertility. Sperm cells were evaluated at 8400x magnification using an inverted microscope equipped with Nomarski (differential interference contrast) optics. Two forms of spermatozoa were considered: normal spermatozoa and spermatozoa with large nuclear vacuoles (LNV, defined as vacuoles occupying > 50% of the sperm nuclear area). At least 200 spermatozoa per sample were evaluated, and the percentages of normal and LNV spermatozoa were determined. The subjects were divided into three groups according to age: Group I, less than or equal to 35 years; Group II, 36-40 years; and Group III, greater than or equal to 41 years.Results: There was no difference in the percentages of normal sperm between the two younger (I and II) groups (P > 0.05). The percentage of normal sperm in the older group (III) was significantly lower than that in the younger (I and II) groups (P < 0.05). There was no difference in the percentage of LNV spermatozoa between the younger (I and II) groups (P > 0.05). The percentage of LNV spermatozoa was significantly higher in the older group (III) than in the younger (I and II) groups (P < 0.05). Regression analysis demonstrated a significant decrease in the incidence of normal sperm with increasing age (P < 0.05; r = -0.10). However, there was a significant positive correlation between the percentage of spermatozoa with LNV and male age (P < 0.05, r = 0.10).Conclusion: The results demonstrated a consistent decline in semen quality, as reflected by morphological evaluation by MSOME, with increased age. Considering the relationship between nuclear vacuoles and DNA damage, these age-related changes predict that increased paternal age should be associated with unsuccessful or abnormal pregnancy as a consequence of fertilisation with damaged spermatozoa. Given that sperm nuclear vacuoles can be evaluated more precisely at high magnification, these results support the routine use of MSOME for ICSI as a criterion for semen analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleolus is a subcompartment of the nucleus and the site of ribosome biogenesis. During the mitotic and meiotic cell cycles, a disorganization and later reorganization of the nucleolar material occur, an event called nucleologenesis. In the spermatogenesis of mammals and other vertebrates, there is evidence of the disorganization of the nucleolus at the end of meiosis I, which supplies material for the cytoplasmic formation of an organelle called the chromatoid body (CB). The CB is a structure characteristic of spermatogenic cells and seems to be responsible for RNA metabolism in these cells and for some events of spermiogenesis, such as the formation of the acrosome, cellular communication between spermatids, and the formation of the spermatozoon middle piece and tail. The aim of this paper was to obtain information about the cytochemical and ultrastructural nature of the nucleolar cycle and the distribution of cytoplasmic RNAs in the seminiferous tubule cells of Rattus novergiucus, Mus musculus and Meriones unguiculatus. The testis was fixed in Bouin and Karnovsky solutions for conventional histological analysis and for cytochemical study that included: periodic acid-Schiff, hematoxylin-eosin, Feulgen reaction, silver-ion impregnation, Gomori's reticulin stain, toluidine blue, modified method of critical electrolyte concentration, and basic and acid fast green. The blocks of testis fixed in glutaraldehyde were used for ultrastructural analysis by transmission electron microscopy. Ultrathin sections were double-stained with uranyl acetate and lead citrate. All the techniques used provided information on the origin and function of the CB in the spermatogenic cells. Therefore, considering the persistence of the RNA and nucleolar ribonucleoproteins during spermatogenesis of Rattus novergicus, Mus musculus and Meriones unguiculatus, our findings corroborate the statement that these molecular complexes are very important in the spermiogenesis phases. It can be suggested that these ribonucleoprotein corpuscles (chromatoid bodies) are of nuclear origin and have a role in the successive series of events that occur in the formation of the spermatozoon. Furthermore, these results reinforce the conservation of the mechanisms involved in preserving necessary levels of protein stocks in different stages of cell differentiation, from spermatid to spermatozoon, in these rodent species. ©FUNPEC-RP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)