35 resultados para Expression profiling

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa is the etiologic agent of diseases in a wide range of economically important crops including citrus variegated chlorosis, a major threat to the Brazilian citrus industry. The genomes of several strains of this phytopathogen have been completely sequenced enabling large-scale functional studies. In this work we used whole-genome DNA microarrays to investigate the transcription profile of X. fastidiosa grown in defined media with different glucose concentrations. Our analysis revealed that while transcripts related to fastidian gum production were unaffected, colicin-V-like and fimbria precursors were induced in high glucose medium. Based on these results, we suggest a model for colicin-defense mechanism in X. fastidiosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mitochondrial inner membrane uncoupling proteins (UCP) catalyze a proton conductance that dissipates the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCPs are involved in mitochondrial energy flow regulation and have been implicated in oxidative stress tolerance. Based on the global gene expression profiling datasets available for Arabidopsis thaliana, in this review we discuss the regulation of UCP gene expression during development and in response to stress, and provide interesting insights on the possible existence of epigenetic regulation of UCP expression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved. © The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The search for molecular markers to improve diagnosis, individualize treatment and predict behavior of tumors has been the focus of several studies. This study aimed to analyze homeobox gene expression profile in oral squamous cell carcinoma (OSCC) as well as to investigate whether some of these genes are relevant molecular markers of prognosis and/or tumor aggressiveness. Homeobox gene expression levels were assessed by microarrays and qRT-PCR in OSCC tissues and adjacent non-cancerous matched tissues (margin), as well as in OSCC cell lines. Analysis of microarray data revealed the expression of 147 homeobox genes, including one set of six at least 2-fold up-regulated, and another set of 34 at least 2-fold down-regulated homeobox genes in OSCC. After qRT-PCR assays, the three most up-regulated homeobox genes (HOXA5, HOXD10 and HOXD11) revealed higher and statistically significant expression levels in OSCC samples when compared to margins. Patients presenting lower expression of HOXA5 had poorer prognosis compared to those with higher expression (P=0.03). Additionally, the status of HOXA5, HOXD10 and HOXD11 expression levels in OSCC cell lines also showed a significant up-regulation when compared to normal oral keratinocytes. Results confirm the presence of three significantly upregulated (>4-fold) homeobox genes (HOXA5, HOXD10 and HOXD11) in OSCC that may play a significant role in the pathogenesis of these tumors. Moreover, since lower levels of HOXA5 predict poor prognosis, this gene may be a novel candidate for development of therapeutic strategies in OSCC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Model of study: Experimental study. Introduction: Recently, stem cell research has generated great interest due to its applicability in regenerative medicine. Bone marrow is considered the most important source of adult stem cells and the establishment of new methods towards gene expression analysis regarding stem cells has become necessary. Thus Differential Display Reverse Transcription Polymerase Chain Reaction (DDRT-PCR) may be an accessible tool to investigate small differences in the gene expression of different stem cells in distinct situations. Aim: In the present study, we investigated the exequibility of DDRT-PCR to identify differences in global gene expression of mice bone marrow cells under two conditions. Methods: First, bone marrow cells were isolated fresh and a part was cultivated during one week without medium replacement. Afterwards, both bone marrow cells (fresh and cultivated) were submitted to gene expression analyses by DDRT-PCR. Results: Initially, it was possible to observe in one week-cultured bone marrow cells, changes in morphology (oval cells to fibroblastic-like cells) and protein profile, which was seen through differences in band distribution in SDS-Page gels. Finally through gene expression analysis, we detected three bands (1300, 1000 and 225 bp) exclusively expressed in the fresh bone marrow group and two bands (400 and 300 bp) expressed specifically in the cultivated bone marrow cell group. Conclusions: In summary, the DDRT-PCR method was proved efficient towards the identification of small differences in gene expression of bone marrow cells in two defined conditions. Thus, we expect that DDRT-PCR can be fast and efficiently designed to analyze differential gene expression in several stem cell types under distinct conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Muscle growth mechanisms are controlled by molecular pathways that can be affected by fasting and refeeding. In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this study was to analyze the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three groups: (FC) control, feeding continuously for 42. days, (F5) 5. days of fasting and 37. days of refeeding, and (F10) 10. days of fasting and 32. days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n = 14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analyses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5 showed total compensatory mass gain. After 5 and 10. days of fasting, a significant increase in the muscle fiber frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5. days of fasting, MyoD and myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the refeeding caused compensatory mass gain and changed the expression of muscle growth-related genes that promote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of alternative warm fish feeding strategies on muscle growth-related genes. © 2013.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignancies of the head and neck tumors Zhang et al., 2013 [1]). Previous studies have associated its occurrence with social activities, such as tobacco and alcohol consumption (Hashibe et al., 2007a [2]; Hashibe et al., 2007b [3]; Shangina et al., 2006 [4]). Here, we performed a genome-wide gene expression profiling in thirty-one patients positively diagnosed for LSCC, in order to investigate new targets involved in tumorigenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N-2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins.Results: Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases.Conclusion: An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Oral Squamous Cell Carcinoma (OSCC) is a major cause of cancer death worldwide, which is mainly due to recurrence leading to treatment failure and patient death. Histological status of surgical margins is a currently available assessment for recurrence risk in OSCC; however histological status does not predict recurrence, even in patients with histologically negative margins. Therefore, molecular analysis of histologically normal resection margins and the corresponding OSCC may aid in identifying a gene signature predictive of recurrence.Methods: We used a meta-analysis of 199 samples (OSCCs and normal oral tissues) from five public microarray datasets, in addition to our microarray analysis of 96 OSCCs and histologically normal margins from 24 patients, to train a gene signature for recurrence. Validation was performed by quantitative real-time PCR using 136 samples from an independent cohort of 30 patients.Results: We identified 138 significantly over-expressed genes (> 2-fold, false discovery rate of 0.01) in OSCC. By penalized likelihood Cox regression, we identified a 4-gene signature with prognostic value for recurrence in our training set. This signature comprised the invasion-related genes MMP1, COL4A1, P4HA2, and THBS2. Overexpression of this 4-gene signature in histologically normal margins was associated with recurrence in our training cohort (p = 0.0003, logrank test) and in our independent validation cohort (p = 0.04, HR = 6.8, logrank test).Conclusion: Gene expression alterations occur in histologically normal margins in OSCC. Over-expression of the 4-gene signature in histologically normal surgical margins was validated and highly predictive of recurrence in an independent patient cohort. Our findings may be applied to develop a molecular test, which would be clinically useful to help predict which patients are at a higher risk of local recurrence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)