35 resultados para Colony-stimulating Factor

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli ( Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells.Results: Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside ( IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture.Conclusion: The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) regulates granulocyte precursor cell proliferation, neutrophil survival, and activation. Cyclic hematopoiesis, a disease that occurs both in humans and grey collie dogs is characterized by cyclical variations in blood neutrophils. Although the underlying molecular defect is not known, long-term daily administration of recombinant G-CSF eliminates the severe recurrent neutropenia, indicating that expression of G-CSF by gene therapy would be beneficial. As a prelude to preclinical studies in affected collie dogs, we monitored hematopoiesis in rats receiving vascular smooth muscle cells transduced to express G-CSF. Cells transduced with LrGSN, a retrovirus expressing rat G-CSF, were implanted in the carotid artery and control animals received cells transduced with LASN, a retrovirus expressing human adenosine deaminase (ADA). Test animals showed significant increases in neutrophil counts for at least 7 weeks, with mean values of 3,670 +/- 740 cells/mu l in comparison to 1,870 +/- 460 cells/mu l in controls (p < 0.001). Thus, in rats G-CSF gene transfer targeted at vascular smooth muscle cells initiated sustained production of 1,800 neutrophils/mu l, a cell number that would provide clinical benefit to patients. Lymphocytes, red cells and platelets were not different between control and test animals (p > 0.05). These studies indicate that retrovirally transduced vascular smooth muscle cells can provide sustained clinically useful levels of neutrophils in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) acts on precursor hematopoietic cells to control the production and maintenance of neutrophils. Recombinant G-CSF (re-G-CSF)is used clinically to treat patients with neutropenia and has greatly reduced the infection risk associated with bone marrow transplantation. Cyclic hematopoiesis, a stem cell defect characterized by severe recurrent neutropenia, occurs in man and grey collie dogs, and can be treated by administration of re-G-CSF. Availability of the rat G-CSF cDNA would benefit the use of rats as models of gene therapy for the treatment of cyclic hematopoiesis. In preliminary rat experiments, retroviral-mediated expression of canine G-CSF caused neutralizing antibody formation which precluded long-term increases in neutrophil counts. To overcome this problem we cloned the rat G-CSF cDNA from RNA isolated from skin fibroblasts. The rat G-CSF sequence shared a high degree of identity in both the coding and non-coding regions with both the murine G-CSF (85%) and human G-CSF (74%). The signal peptides of murine and human G-CSF both contained 30 amino acids (aa), whereas the deduced signal sequence for rat G-CSF possessed 21 aa. A retrovirus encoding the rat G-CSF cDNA synthesized bioactive G-CSF from transduced vascular smooth muscle cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emphysema is a chronic obstructive pulmonary disease characterized abnormal dilatation of alveolar spaces, which impairs alveolar gas exchange, compromising the physical capacity of a patient due to airflow limitations. Here we tested the effects of G-CSF administration in pulmonary tissue and exercise capacity in emphysematous mice. C57Bl/6 female mice were treated with elastase intratracheally to induce emphysema. Their exercise capacities were evaluated in a treadmill. Lung histological sections were prepared to evaluate mean linear intercept measurement. Emphysematous mice were treated with G-CSF (3 cycles of 200 μg/kg/day for 5 consecutive days, with 7-day intervals) or saline and submitted to a third evaluation 8 weeks after treatment. Values of run distance and linear intercept measurement were expressed as mean ± SD and compared applying a paired t-test. Effects of treatment on these parameters were analyzed applying a Repeated Measures ANOVA, followed by Tukey's post hoc analysis. p < 0.05 was considered statistically significant. Twenty eight days later, animals ran significantly less in a treadmill compared to normal mice (549.7 ± 181.2 m and 821.7 ± 131.3 m, respectively; p < 0.01). Treatment with G-CSF significantly increased the exercise capacity of emphysematous mice (719.6 ± 200.5 m), whereas saline treatment had no effect on distance run (595.8 ± 178.5 m). The PCR cytokines genes analysis did not detect difference between experimental groups. Morphometric analyses in the lung showed that saline-treated mice had a mean linear intercept significantly higher (p < 0.01) when compared to mice treated with G-CSF, which did not significantly differ from that of normal mice. Treatment with G-CSF promoted the recovery of exercise capacity and regeneration of alveolar structural alterations in emphysematous mice. © 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As neutropenias persistentes podem ser decorrentes de alterações na granulopoiese, causadas por efeitos supressivos ou tóxicos à medula óssea, predispõem o paciente a infecções comprometendo sua sobrevida. As neutropenias intensas decorrentes de toxicidade por quimioterápicos podem requerer a suspensão temporária ou permanente do medicamento, podendo gerar resistência das células neoplásicas ao tratamento. O uso de fatores de crescimento hematopoiético recombinantes em animais tem aumentado muito nos últimos anos, devido a sua crescente disponibilidade na medicina humana. O fator estimulante de colônia para granulócitos recombinante humano (rhG-CSF) age aumentando o número de neutrófilos circulantes e possui grande potencial para amenizar ou reverter quadros de neutropenia associada a condições de mielotoxicidade e mielosupressão em cães e gatos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Therapy strategies for myelodysplastic syndromes (MDS) and juvenile myelomonocytic leukemia (JMML) vary considerably. Objective: To review the treatment of Brazilian children who were diagnosed with MDS or JMML in the past decade and reported to the Brazilian Cooperative Group on Pediatric Myelodysplastic syndromes (BCG-MDS-PED). Results: of 173 children reported to the BCG-MDS-PED from January 1997 to January 2003 with a suspected diagnosis of MDS or JMML, 91 had the diagnosis confirmed after central review of the bone marrow aspirate and biopsy. Information on previous treatments was available for 78 MDS/JMML patients. Treatment varied from different schedules of low-dose (14%) and standard-dose chemotherapy (50%), granulocyte-colony-stimulating factor (G-CSF 7%), interferon (5%), steroids (2%) and erythropoietin (2%) to allogeneic stem-cell transplantation (SCT) (14%). No survival advantage could be demonstrated based on Hasle's classification or based on treatment. Conclusion: This report reflects the current practice in treating Brazilian children with MDS/JMML without specific Cooperative Group guidelines. Treatment modalities were very heterogeneous. The strategies for implementing a national protocol should consider international guidelines and focus on local experience and available resources. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN) has been used successfully to induce immune responses against viral and intracellular organisms in mammals. The main objective of this study was to test the effect of CpG-ODN on antigen presenting cells of young foals. Methods: Peripheral blood monocytes of foals (n = 7) were isolated in the first day of life and monthly thereafter up to 3 months of life. Adult horse (n = 7) monocytes were isolated and tested once for comparison. Isolated monocytes were stimulated with IL-4 and GM-CSF (to obtain dendritic cells, DC) or not stimulated (to obtain macrophages). Macrophages and DCs were stimulated for 14-16 hours with either CpG-ODN, LPS or not stimulated. The stimulated and non-stimulated cells were tested for cell surface markers (CD86 and MHC class II) using flow cytometry, mRNA expression of cytokines (IL-12, IFNα, IL-10) and TLR-9 using real time quantitative RT-PCR, and for the activation of the transcription factor NF-κB p65 using a chemiluminescence assay. Results: The median fluorescence of the MHC class II molecule in non-stimulated foal macrophages and DCs at birth were 12.5 times and 11.2 times inferior, respectively, than adult horse cells (p = 0.009). That difference subsided at 3 months of life (p = 0.3). The expression of the CD86 co-stimulatory molecule was comparable in adult horse and foal macrophages and DCs, independent of treatment. CpG-ODN stimulation induced IL-12p40 (53 times) and IFNα (23 times) mRNA expression in CpG-ODN-treated adult horse DCs (p = 0.078), but not macrophages, in comparison to non-stimulated cells. In contrast, foal APCs did not respond to CpG-ODN stimulation with increased cytokine mRNA expression up to 3 months of age. TLR-9 mRNA expression and NF-kB activation (NF-kB p65) in foal DCs and macrophages were comparable (p > 0.05) to adult horse cells. Conclusion: CpG-ODN treatment did not induce specific maturation and cytokine expression in foal macrophages and DCs. Nevertheless, adult horse DCs, but not macrophages, increased their expression of IL-12 and IFNα cytokines upon CpG-ODN stimulation. Importantly, foals presented an age-dependent limitation in the expression of MHC class II in macrophages and DCs, independent of treatment. © 2007 Flaminio et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. Methods: Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. Results: This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. Conclusion: These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection. © 2007 Pelizon et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late-onset neonatal sepsis is a common serious problem in preterm infants in neonatal intensive care units. Diagnosis can be difficult because clinical manifestations are not specific and none of the available laboratory tests can be considered an ideal marker. For this reason, a combination of markers has been proposed. Complete blood count and acute-phase reactants evaluated together help in diagnosis. C-reactive protein is a specific but late marker, and procalcitonin has proven accurate, although it is little studied in newborns. Blood, cerebrospinal fluid, and urine cultures always should be obtained when late-onset sepsis is suspected. Blood culture, the gold standard in diagnosis, is highly sensitive but needs up to 48 hours to detect microbial growth. Various cytokines have been investigated as early markers of infection, but results are not uniform. Other diagnostic tests that offer promise include: neutrophil surface markers, granulocyte colony-stimulating factor, toll-like receptors, and nuclear factor kappa B. The greatest hope for quick and accurate diagnosis lies in molecular biology, using real time polymerase chain reaction combined withDNAmicroarray. Sepsis and meningitis may affect both the short- and long-term prognosis for newborns. Mortality in neonatal meningitis has been reduced in recent years, but short-term complications and later neurocognitive sequelae remain. Late-onset sepsis significantly increases preterm infant mortality and the risk of cerebral lesions and neurosensory sequelae, including developmental difficulties and cerebral palsy. Early diagnosis of late-onset sepsis contributes to improved neonatal prognosis, but the outcome remains far from satisfactory. © 2010 by the American Academy of Pediatrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background & Aims Patients infected with hepatitis C virus (HCV) genotype 1, body weight <85 kg, and high baseline viral load respond poorly to standard doses of pegylated interferon (peginterferon) and ribavirin. We evaluated intensified therapy with peginterferon alfa-2a plus ribavirin. Methods This double-blind randomized trial included HCV genotype 1-infected outpatients from hepatology clinics with body weight <85 kg and HCV RNA titer <400,000 IU/mL. Patients were randomized to 180 μg/wk peginterferon alfa-2a for 48 weeks plus 1200 mg/day ribavirin (standard of care) (group A, n = 191) or 1400/1600 mg/day ribavirin (group B, n = 189). Additional groups included 360 μg/wk peginterferon alfa-2a for 12 weeks then 180 μg/wk peginterferon alfa-2a for 36 weeks plus 1200 mg/day ribavirin (group C, n = 382) or 1400/1600 mg/day ribavirin (group D, n = 383). Follow-up lasted 24 weeks after treatment. Results Sustained virologic response rates (HCV RNA level <15 IU/mL at end of follow-up) in groups A, B, C, and D were 38%, 43%, 44%, and 41%, respectively. There were no significant differences among the 4 groups or between pooled peginterferon alfa-2a regimens (A + B vs C + D: odds ratio [OR], 1.08; 95% confidence interval [CI], 0.831.39; P = .584) or pooled ribavirin regimens (A + C vs B + D: OR, 1.00; 95% CI, 0.791.28; P = .974). Conclusions In patients infected with HCV genotype 1 who are difficult to treat (high viral load, body weight <85 kg), a 12-week induction regimen of peginterferon alfa-2a and/or higher-dose ribavirin is not more effective than the standard regimen. © 2010 AGA Institute.