34 resultados para Cereal yellow dwarf virus

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies were carried out in Brazil to study the inheritance of tolerance to Zucchini yellow mosaic virus (ZYMV) in cucumber cv. Formosa. This cultivar was individually crossed with two cucumber lines from different varietal types (L(b) from a Brazilian type, and L(j) from a Japanese type), both susceptible to the virus. Two experiments, one for each line, were separately carried out, where 6 treatments (parents, generations F1, F2 and F1BC1 for both parents) were evaluated in a randomized block design with 5 repetitions. Cotyledons of 2-week-old cucumber seedlings were inoculated with ZYMV. Only the plants that did not show symptoms up to 63 days post inoculation were considered as tolerant. A chi-square (chi(2)) analysis for assessing segregation from F2 and both F1BC1, led to the conclusion that the tolerance found in cv. Formosa is determined by a recessive gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plantas de Capsicum annuum cv. Magali R, resistentes ao Pepper yellow mosaic virus (PepYMV), exibindo sintomas severos de mosaico amarelo, malformação foliar e subdesenvolvimento foram encontradas em plantios na região de Lins, SP, Brasil, em 2003/04. Partículas semelhantes àquelas do gênero Potyvirus foram observadas em extrato foliar de planta infectada examinado em microscópio eletrônico de transmissão. O extrato foliar também reagiu com anti-soro contra o PepYMV em PTA-ELISA. Além de C. annuum cv. Magali R, esse potyvirus também infectou sistemicamente C. annuum cv. Rubia R, que é resistente ao PepYMV. A seqüência de nucleotídeos de parte do gene da proteína capsidial (CP) desse potyvirus apresentou 96-98% de identidade com a de outros isolados do PepYMV. A seqüência parcial de nucleotídeos da região 3' não traduzida (3' NTR) apresentou 94-96% de identidade com a do PepYMV. Esses resultados são indicativos de que o potyvirus que quebrou a resistência em pimentão é um isolado do PepYMV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results: In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role in YFV replication. Conclusions: Although the precise function of eIF3L on interactions with viral proteins is not entirely understood, these results indicate an interaction of eIF3L with YF NS5 and that eIF3L overexpression facilitates translation, which has potential implications for virus replication. © 2013 Morais et al.; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To describe the investigation of a sylvatic yellow fever outbreak in the state of Sao Paulo and the main control measures undertaken.METHODS: This is a descriptive study of a sylvatic yellow fever outbreak in the Southwestern region of the state from February to April 2009. Suspected and confirmed cases in humans and in non-human primates were evaluated. Entomological investigation in sylvatic environment involved capture at ground level and in the tree canopy to identify species and detect natural infections. Control measures were performed in urban areas to control Aedes aegypti. Vaccination was directed at residents living in areas with confirmed viral circulation and also at nearby cities according to national recommendation.RESULTS: Twenty-eight human cases were confirmed (39.3% case fatality rate) in rural areas of Sarutaia, Piraju, Tejupa, Avare, and Buri. The deaths of 56 non-human primates were also reported, 91.4% were Allouatta sp. Epizootics was confirmed in two non-human primates in the cities of Itapetininga and Buri. A total of 1,782 mosquitoes were collected, including Haemagogus leucocelaenus, Hg. janthinomys/capricornii, and Sabethes chloropterus, Sa. purpureus and Sa. undosus. Yellow fever virus was isolated from a group of Hg. Leucocelaenus from Buri. Vaccination was carried out in 49 cities, with a total of 1,018,705 doses. Nine serious post-vaccination adverse events were reported.CONCLUSIONS: The cases occurred between February and April 2009 in areas with no recorded yellow fever virus circulation in over 60 years. The outbreak region occurred outside the original recommended vaccination area with a high percentage of susceptible population. The fast adoption of control measures interrupted the human transmission within a month and the confirmation of viral circulation in humans, monkeys and mosquitoes. The results allowed the identification of new areas of viral circulation but further studies are required to clarify the dynamics of the spread of this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lettuce mottle virus (LeMoV) and dandelion yellow mosaic virus (DaYMV) infect lettuce in South America and Europe, respectively. LeMoV and DaYMV possess isometric particles, occur at low concentrations in plants and have narrow host ranges. Partial genome sequences of both viruses were obtained using purified viral preparations and universal primers for members of the family Sequiviridae. DaYMV and LeMoV sequences were analyzed and showed identity with other members of the family. Universal primers that detect both viruses and specific primers for LeMoV and DaYMV were designed and used in RT-PCR-based diagnostic assays. These results provide the first molecular data on the LeMoV and DaYMV genomes and suggest that LeMoV is a member of the genus Sequivirus, probably distinct from DaYMV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant responses against pathogens cause up-and downward shifts in gene expression. To identify differentially expressed genes in a plant-virus interaction, susceptible tomato plants were inoculated with the potyvirus Pepper yellow mosaic virus (PepYMV) and a subtractive library was constructed from inoculated leaves at 72 h after inoculation. Several genes were identified as upregulated, including genes involved in plant defense responses (e. g., pathogenesis-related protein 5), regulation of the cell cycle (e. g., cytokinin-repressed proteins), signal transduction (e. g., CAX-interacting protein 4, SNF1 kinase), transcriptional regulators (e. g., WRKY and SCARECROW transcription factors), stress response proteins (e. g., Hsp90, DNA-J, 20S proteasome alpha subunit B, translationally controlled tumor protein), ubiquitins (e. g., polyubiquitin, ubiquitin activating enzyme 2), among others. Downregulated genes were also identified, which likewise display identity with genes involved in several metabolic pathways. Differential expression of selected genes was validated by macroarray analysis and quantitative real-time polymerase chain reaction. The possible roles played by some of these genes in the viral infection cycle are discussed.