112 resultados para 110603 Motor Control

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orofacial movement is a complex function performed by facial and jaw muscles. Jaw movement is enacted through the triggering of motoneurons located primarily in the trigeminal motor nucleus (Mo5). The Mo5 is located in the pontine reticular formation, which is encircled by premotor neurons. Previous studies using retrograde tracers have demonstrated that premotor neurons innervating the Mo5 are distributed in brainstem areas, and electrophysiological studies have suggested the existence of a subcortical relay in the corticofugal-Mo5 pathway. Various neurotransmitters have been implicated in oral movement. Dopamine is of special interest since its imbalance may produce changes in basal ganglia activity, which generates abnormal movements, including jaw motor dysfunction, as in oral dyskinesia and possibly in bruxism. However, the anatomical pathways connecting the dopaminergic systems with Mo5 motoneurons have not been studied systematically. After injecting retrograde tracer fluorogold into the Mo5, we observed retrograde-labeled neurons in brainstem areas and in a few forebrain nuclei, such as the central nucleus of the amygdala, and the parasubthalamic nucleus. By using dual-labeled immunohistochemistry, we found tyrosine hydroxylase (a catecholamine-processing enzyme) immunoreactive fibers in close apposition to retrograde-labeled neurons in brainstem nuclei, in the central nucleus of the amygdala and the parasubthalamic nucleus, suggesting the occurrence of synaptic contacts. Therefore, we suggested that catecholamines may regulate oralfacial movements through the premotor brainstem nuclei, which are related to masticatory control, and forebrain areas related to autonomic and stress responses. (C) 2005 Elsevier B.V.. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a control method that is effective to reduce the degenerative effects of delay time caused by a treacherous network. In present application a controlled DC motor is part of an inverted pendulum and provides the equilibrium of this system. The control of DC motor is accomplished at the distance through a treacherous network, which causes delay time in the control signal. A predictive technique is used so that it turns the system free of delay. A robust digital sliding mode controller is proposed to control the free-delay system. Due to the random conditions of the network operation, a delay time detection and accommodation strategy is also proposed. A computer simulation is shown to illustrate the design procedures and the effectiveness of the proposed method. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to analyze the effect of muscle fatigue in active and inactive young adults on the kinematic and kinetic parameters of normal gait and obstacle crossing. Twenty male subjects were divided into active (10) and inactive (10), based on self-reported physical activity. Participants performed three trials of two tasks (normal gait and obstacle crossing) before and after a fatigue protocol, consisting of repeated sit-to-stand transfers until the instructed pace could no longer be maintained. MANOVAs were used to compare dependent variables with the following factors: physical activity level, fatigue and task. The endurance time in the fatigue protocol was lower for the inactive group. Changes of gait parameters with fatigue, among which increased step width and increased stride speed were the most consistent, were independent of task and physical activity level. These findings indicate that the kinematic and kinetic parameters of gait are affected by muscle fatigue irrespective of the physical activity level of the subjects and type of gait. Inactive individuals used a slightly different strategy than active individuals when crossing an obstacle, independently of muscle fatigue. © 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências da Motricidade - IBRC

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: The progress in technology, associated to the high survival rate in premature newborn infants in neonatal intensive care units, causes an increase in morbidity. Individuals with CP present complex motor alterations, with primary deficits of abnormal muscle tone affecting posture and voluntary movement, alteration of balance and coordination, decrease of force, and loss of selective motor control with secondary problems of contractures and bone deformities.Objective: The aim of this work is to describe the spontaneous movement and strategies that lead infants with cerebral palsy to move.Methods: Seven infants used to receive assistance at the Essential Stimulation Center of CIAM (Israeli Center for Multidisciplinary Support - Philanthropic Institution), with ages ranging between six and 18 months with diagnosis of Cerebral Palsy (CP) were assessed.Results: The results show the difficulty presented by the infants with respect to the spontaneous motor functions and the necessity of help from the caregiver in order to perform the functional activity (mobility). Prematurity prevails as the major risk factor among the complications.Conclusion: The child development can be understood as a product of the dynamic interactions involving the infant, the family, and the context. Thus, the social interactions and family environment in which the infant live may encourage or limit both the acquisition of skills and the functional independence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of visual and somatosensory information on body sway in individuals with Down syndrome (DS). Nine adults with DS (19-29 years old) and nine control subjects (CS) (19-29 years old) stood in the upright stance in four experimental conditions: no vision and no touch; vision and no touch; no vision and touch; and vision and touch. In the vision condition, participants looked at a target placed in front of them; in the no vision condition, participants wore a black cotton mask. In the touch condition, participants touched a stationary surface with their right index finger; in the no touch condition, participants kept their arms hanging alongside their bodies. A force plate was used to estimate center of pressure excursion for both anterior-posterior and medial-lateral directions. MANOVA revealed that both the individuals with DS and the control subjects used vision and touch to reduce overall body sway, although individuals with DS still oscillated more than did the CS. These results indicate that adults with DS are able to use sensory information to reduce body sway, and they demonstrate that there is no difference in sensory integration between the individuals with DS and the CS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article uses an anchor metaphor to explain the dynamic interplay between the human body's active uses of nonrigid tools to mediate information about its adjacent environment to enhance postural control. The author used an anchor system (ropes attached to varying weights resting on the floor) to test blindfolded adults who performed a restricted-balance task (30 s one-foot standing). Participants were tested while holding the anchors under a variety of weight conditions (125 g, 250 g, 500 g, and I kg) and again during a baseline condition (no anchors). When compared with the baseline condition, there was a significant reduction in the amount of body sway across the anchor conditions. The author found that mechanical support provided by the anchor system was secondary to its haptic exploratory function and that an individual can use the anchoring strategy with a dual purpose: for resting and for reorientation after intrinsic disruptions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many electronic drivers for the induction motor control are based on sensorless technologies. The proposal of this work Is to present an alternative approach of speed estimation, from transient to steady state, using artificial neural networks. The inputs of the network are the RMS voltage, current and speed estimated of the induction motor feedback to the input with a delay of n samples. Simulation results are also presented to validate the proposed approach. © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Networked control systems (NCS) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks which enable interoperability between existing wired and wireless systems. This paper presents the feasibility analysis of using a serial RS-232 to Bluetooth converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial RS-232 Bluetooth converters can be used to implement wireless networked control systems (WNCS) providing transmission rates and closed control loop times which are acceptable for NCS applications. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Networked control systems (NCS) are distributed control system where the sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks (WNCS) enabling interoperability between existing wired and wireless systems. This paper evaluates a serial RS-232 ZigBee device as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the device capabilities. In addition the control performance of an implemented motor control system using the device is analyzed. Experimental results led to the conclusion that serial RS-232 ZigBee devices can be used to implement WNCS and the use of this device delay information in the PID controller discretization can improve the control performance of the system. © 2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Haptic information, provided by a non-rigid tool (i.e., an anchor system), can reduce body sway in individuals who perform a standing postural task. However, it was not known whether or not continuous use of the anchor system would improve postural control after its removal. Additionally, it was unclear as to whether or not frequency of use of the anchor system is related to improved control in older adults. The present study evaluated the effect of the prolonged use of the anchor system on postural control in healthy older individuals, at different frequencies of use, while they performed a postural control task (semi-tandem position). Participants were divided into three groups according to the frequency of the anchor system's use (0%, 50%, and 100%). Pre-practice phase (without anchor) was followed by a practice phase (they used the anchor system at the predefined frequency), and a post-practice phase (immediate and late-without anchor). All three groups showed a persistent effect 15. min after the end of the practice phase (immediate post-practice phase). However, only the 50% group showed a persistent effect in the late post-practice phase (24. h after finishing the practice phase). Older adults can improve their postural control by practicing the standing postural task, and use of the anchor system limited to half of their practice time can provide additional improvement in their postural control. © 2013 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A recent trend in networked control systems (NCSs) is the use of wireless networks enabling interoperability between existing wired and wireless systems. One of the major challenges in these wireless NCSs (WNCSs) is to overcome the impact of the message loss that degrades the performance and stability of these systems. Moreover, this impact is greater when dealing with burst or successive message losses. This paper discusses and presents the experimental results of a compensation strategy to deal with this burst message loss problem in which a NCS mathematical model runs in parallel with the physical process, providing sensor virtual data in case of packet losses. Running in real-time inside the controller, the mathematical model is updated online with real control signals sent to the actuator, which provides better reliability for the estimated sensor feedback (virtual data) transmitted to the controller each time a message loss occurs. In order to verify the advantages of applying this model-based compensation strategy for burst message losses in WNCSs, the control performance of a motor control system using CAN and ZigBee networks is analyzed. Experimental results led to the conclusion that the developed compensation strategy provided robustness and could maintain the control performance of the WNCS against different message loss scenarios.