50 resultados para 030603 Colloid and Surface Chemistry
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thin solid films of bis benzimidazo perylene (AzoPTCD) were fabricated using physical vapor deposition (PVD) technique. Thermal stability and integrity of the AzoPTCD PVD films during the fabrication (similar to 400 degrees C at 10(-6) Torr) were monitored by Raman scattering. Complementary thermogravimetric results showed that thermal degradation of AzoPTCD occurs at 675 degrees C. The growth of the PVD films was established through UV-vis absorption spectroscopy, and the surface morphology was surveyed by atomic force microscopy (AFM) as a function of the mass thickness. The AzoPTCD molecular organization in these PVD films was determined using the selection rules of infrared absorption spectroscopy (transmission and reflection-absorption modes). Despite the molecular packing, X-ray diffraction revealed that the PVD films are amorphous. Theoretical calculations (density functional theory, B3LYP) were used to assign the vibrational modes in the infrared and Raman spectra. Metallic nanostructures, able to sustain localized surface plasmons (LSP) were used to achieve surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF).
Resumo:
Purpose: To evaluate the effect of 2 postpolymerization treatments on toothbrushing wear (weight loss) and surface roughness of 3 autopolymerized reline resins-Duraliner II (D) (Reliance Dental), Kooliner (K) (Coe Laboratories), and Tokuso Rebase Fast (T) (Tokuyama Dental)-and 1 heat-polymerized resin, Lucitone 550 (L) (Dentsply International). Materials and Methods: Specimens (40 x 10 x 2mm) of each material (n = 24) were prepared and divided into 3 groups: control (no postpolymerization treatment); water bath (immersion in water at 55°C); and microwave (microwave irradiation). Specimens were dried until constant weight was achieved and the surface roughness (Ra) was measured. Tests were performed in a toothbrush machine using 20,000 strokes of brushing at a weight of 200 g, with the specimens immersed in 1:1 dentifrice/water slurry. Specimens were reconditioned to constant weight and the weight loss (mg) and surface roughness were evaluated. Data were analyzed by 2-way analysis of variance and followed by Tukey test (α = .05). Results: In the control group, the weight loss of materials D and T was lower (P < .05) than that of L. No differences among materials were found after postpolymerization treatments (P > .05). The weight loss of material T (control = 0.5 mg) was significantly increased (P < .05) after postpolymerization treatments (water bath = 1.9 mg; microwave = 1.8 mg). For materials K and T, the toothbrushed surface roughness was higher (P < .05) after microwave and waterbath postpolymerization treatments. Material L showed increased surface roughness after microwave postpolymerization treatment. Conclusion: The toothbrushing wear resistance of L was not superior to the reline resins. The postpolymerization treatments did not improve the toothbrushing wear resistance of the materials and produced an increased surface roughness for materials L, K, and T.
Resumo:
Application of nanoscale materials in photovoltaic and photocatalysis devices and photosensors are dramatically affected by surface morphology of nanoparticles, which plays a fundamental role in the understanding of the physical and chemical properties of nanoscale materials. Zinc oxide nanoparticles with an average size of 20 nm were obtained by the use of a sonochemical technique. X-ray diffraction (XRD) associated to Rietveld refinements and transmission electron microscopy (TEM) were used to study structural and morphological characteristics of the samples. An amorphous shell approximately 10 nm thick was observed in the ultrasonically treated sample, and a large reduction in particle size and changes in the lattice parameters were also observed. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Adequate environmental temperature during the brooding period is very important to future broiler performance. Thus, the objective of this study was to investigate the extent to which environmental temperature affects the body weight and cloacal and surface (back, head, wing, and shank) temperatures. The study also investigated the sensible heat loss by radiation of broiler chicks reared at three environmental temperatures (35, 25, and 20 degrees C) up to 7 days of life. The results showed that chicks raised at low environmental temperature (20 degrees C) had lower body weight at 7 days of age. Birds kept at 20 degrees C also had significantly lower cloacal and surface temperatures than did other birds. The most marked difference was seen in the shanks. These findings revealed that body weight declined in chicks reared at 20 degrees C, and radiant heat loss (W) was nine times higher than for the birds kept at 35 degrees C at 7 days of age.
Resumo:
A panel of 19 monoclonal antibodies (mAbs) was used to study the immunological variability of Lettuce mosaic virus (LMV), a member of the genus Potyvirus, and to perform a first epitope characterization of this virus. Based on their specificity of recognition against a panel of 15 LMV isolates, the mAbs could be clustered in seven reactivity groups. Surface plasmon resonance analysis indicated the presence, on the LMV particles, of at least five independent recognition/ binding regions, correlating with the seven mAbs reactivity groups. The results demonstrate that LMV shows significant serological variability and shed light on the LMV epitope structure. The various mAbs should prove a new and efficient tool for LIVIV diagnostic and field epidemiology studies.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cellulose is the major constituent of most plants of interest as renewable sources of energy and is the most extensively studied form of biomass or biomass constituent. Predicting the mass loss and product yields when cellulose is subjected to increased temperature represents a fundamental problem in the thermal release of biomass energy. Unfortunately, at this time, there is no internally consistent model of cellulose pyrolysis that can organize the varied experimental data now available or provide a guide for additional experiments. Here, we present a model of direct cellulose pyrolysis using a multistage decay scheme that we first presented in the IJQC in 1984. This decay scheme can, with the help of an inverse method of assigning reaction rates, provide a reasonable account of the direct fast pyrolysis yield measurements. The model is suggestive of dissociation states of d-glucose (C6H10O5,), the fundamental cellulose monomer. The model raises the question as to whether quantum chemistry could now provide the dissociation energies for the principal breakup modes of glucose into C-1, C-2, C-3, C-4, and C-5 compounds. These calculations would help in achieving a more fundamental description of volatile generation from cellulose pyrolysis and could serve as a guide for treating hemicellulose and lignin, the other major biomass constituents. Such advances could lead to the development of a predictive science of biomass pyrolysis that would facilitate the design of liquifiers and gasifiers based upon renewable feedstocks. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)