119 resultados para GST


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate whether handling and acclimatization could affect the biomarker responses in oysters Crassostrea gigas. Adult oysters were sampled in a farming area, subjected to handling stress during two hours (shell cleaning and transport), and then acclimatized in laboratory for 2, 3 and 4 weeks. Groups of five oysters were sampled before and after the handling (T0 and T1, respectively), and after 2, 3 and 4 weeks acclimatization. During the acclimatization, water was renewed daily, food given twice a day and temperature and salinity maintained at 22 °C and 25 ppt, respectively. One group, in another tank, was kept in similar conditions and was exposed for 1 week to 0.1 % diesel after the 2-weeks acclimatization period. After exposure, gills were immediately frozen in liquid N 2 for biochemical analyses. Higher expression of heat-shock proteins (HSP70) was observed after handling, and after acclimatization periods of 3-week and 4-week, compared to the T0 group. The diesel exposed group did not show elevated levels of HSP70, when compared to the 3-week acclimatized group. The activity of glutathione S-transferase (GST) was unchanged after handling, but was lower after all acclimatization periods, compared to the T0 group. Exposure to diesel caused an increase in GST activity compared to the 3-week acclimatized group, but not compared to T0. The activity of catalase (CAT), acetylcholinesterase (AChE), and the MDA levels remained unchanged during the whole experiment. These results point to the need of a special care in laboratory and field experiments employing HSP70 and GST as biomarkers. (Supported by CNPq-CTPetro to ACDB.). © 2008 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isoflavones are phenolic compounds widely distributed in plants and found in a high percentage in soybeans. They have important biological properties and are regarded as potential chemopreventive agents. The aim of this study was to verify the preventive effect of two soy isoflavones (genistein and daidzein) by a micronucleus assay, analysis of GST activity, and real-time RT-PCR analysis of GSTa2 gene expression. Mutagens of direct (doxorubicin) and indirect (2-aminoanthracene) DNA damage were used. Hepatoma cells (HTC) were treated with genistein or daidzein for 26 h at noncytotoxic concentrations; 10 μM when alone, and 0.1, 1.0 and 10 μM when combined with genotoxic agents. The micronucleus test demonstrated that both isoflavones alone had no genotoxic effect. Genistein showed antimutagenic effects at 10 μM with both direct and indirect DNA damage agents. On phase II enzyme regulation, the current study indicated an increase in total cytoplasmic GST activity in response to genistein and daidzein at 10 μM supplementation. However, the mRNA levels of GSTa2 isozymes were not differentially modulated by genistein or daidzein. The results point to an in vitro antimutagenic activity of genistein against direct and indirect DNA damage-induced mutagenicity. © 2012 Springer Science+Business Media B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main pesticides used in the cultivation of sugarcane in São Paulo State, Brazil, is Regent®800WG, the main active compound of which is fipronil. Fipronil is a potent insecticide that eliminates pests, including insects resistant to pyrethroids, organophosphates (OP) and carbamates (CA). There is little known on the toxic effects of fipronil on non-target organisms, such as tadpoles of frogs. It is possible that this compound carries a high toxicity for these organisms, since the pesticide can be incorporated into aquatic environments during the rainy season, a time which coincides with the time of amphibian reproduction and the occurrence of tadpoles in the aquatic environment in this region. Thus, the pesticide could be contributing to the decline of amphibians in the northwest region of São Paulo state due to its wide use. This study aimed to test the influence of Regent®800WG on some biochemical systems of tadpoles (such as antioxidant defense systems) at different stages of development. The results of analysis from in vivo exposures demonstrated that only a few parameters in the groups exposed to fipronil responded to exposure to Regent®800WG, results which indicate that the pesticide instigates biochemical responses in tadpoles. Although catalase and glucose-6-phosphate dehydrogenase (G6PDH) were unchanged during the experiments, glutathione-S-transferase (GST) was inhibited in tadpoles, and the activity of glutathione reductase (GR) varied according to the exposure period and pesticide concentration. This data demonstrated the influence of the fipronil formulation on the metabolism of tadpoles, and showed that it can increase their susceptibility to environmental contaminants. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study reports the use of biomarkers analyzes in mangrove root crab Goniopsis cruentata tissues to assess the environmental quality of two tropical estuarine areas. Animals from Ceará River estuary presented inhibition of ChE and GST enzymatic activities and higher rates of DNA damage with respect to those sampled in a pristine environment. G. cruentata appears to represent a proper species to monitor the quality of tropical estuaries. Since Ceará River is a legally protected area, this survey highlight the needs to implement actions to control pollution loads and improve the protection of natural ecosystems and resources. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The fungus Paracoccidioides spp is the agent of paracoccidioidomycosis (PCM), a pulmonary mycosis acquired by the inhalation of fungal propagules. Paracoccidioides malate synthase (PbMLS) is important in the infectious process of Paracoccidioides spp because the transcript is up-regulated during the transition from mycelium to yeast and in yeast cells during phagocytosis by murine macrophages. In addition, PbMLS acts as an adhesin in Paracoccidioides spp. The evidence for the multifunctionality of PbMLS indicates that it could interact with other proteins from the fungus and host. The objective of this study was to identify and analyze proteins that possibly bind to PbMLS (PbMLS-interacting proteins) because protein interactions are intrinsic to cell processes, and it might be possible to infer the function of a protein through the identification of its ligands. Results: The search for interactions was performed using an in vivo assay with a two-hybrid library constructed in S. cerevisiae; the transcripts were sequenced and identified. In addition, an in vitro assay using pull-down GST methodology with different protein extracts (yeast, mycelium, yeast-secreted proteins and macrophage) was performed, and the resulting interactions were identified by mass spectrometry (MS). Some of the protein interactions were confirmed by Far-Western blotting using specific antibodies, and the interaction of PbMLS with macrophages was validated by indirect immunofluorescence and confocal microscopy. In silico analysis using molecular modeling, dynamics and docking identified the amino acids that were involved in the interactions between PbMLS and PbMLS-interacting proteins. Finally, the interactions were visualized graphically using Osprey software. Conclusion: These observations indicate that PbMLS interacts with proteins that are in different functional categories, such as cellular transport, protein biosynthesis, modification and degradation of proteins and signal transduction. These data suggest that PbMLS could play different roles in the fungal cell. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological characteristics of Aedes aegypti (Diptera, Culicidae), which is a vector of dengue and yellow fever, make this organism a good model for studying population structure and the events that may influence it under the effect of human activity. We assessed the genetic variability of five A. aegypti populations using RAPD-PCR technique and six primers. Four populations were from Brazil and one was from the USA. A total of 165 polymorphic DNA loci were generated. Considering the six primers and the five populations, the mean value of inter-population genetic diversity (Gst) was 0.277, which is considered high according to the Wright classification. However, pairwise comparisons of the populations gave variable Gst values ranging from 0.044 to 0.289. This variation followed the population's geographic distance to some extent but was also influenced by human activity. The lowest Gst values were obtained in the comparison of populations from cities with intensive commercial and medical contacts. These mosquito populations were previously classified as insecticide resistant, susceptible, or with decreased susceptibility; this parameter apparently had an effect on the Gst values obtained in the pairwise comparisons. ©FUNPEC-RP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physiological control to support the absence of O2 for long periods of diving, and oxidative damage impact caused by the whole process of hypoxia/reperfusion in freshwater turtles is well known. However, effects of contaminants may act as co-varying stressors and cause biological damage, disrupting the hypoxia/reperfusion oxidative damage control. In order to investigate the action of environmental stressors present in domestic or industrial wastewater effluent, we performed a biochemical analysis of biotransformation enzymes, oxidative stress, as well as neuromuscular, physiological and morphological parameters in Phrynops geoffroanus, an hypoxic-tolerant freshwater turtle endemic of South America, using animals sampled in urban area, contaminated by sewage and industrial effluents and animals sampled in control area. Here we demonstrate the physiological and biochemical impact caused by pollution, and the effect that these changes cause in antioxidant activity. Animals from the urban area exhibited higher EROD (ethoxyresorufin-O-deethylase, CYP1A1), GST (glutathione S-transferase), G6PDH (glucose-6-phosphate deshydrogenase), AChE (acetilcholinesterase) activities and also TEAC (trolox-equivalent antioxidant capacity) and TBARS (thiobarbituric acid reactive substances) values. We examined whether two morphometric indices (K - condition factor and HIS - hepatosomatic index) which help in assessing the general condition and possible liver disease, respectively, were modified. The K of the urban animals was significantly decreased compared to the control animals, but the HIS value was increased in animals from the urban area, supporting the idea of an impact in physiology and life quality in the urban freshwater turtles. We propose that this freshwater turtle specie have the ability to enhance its antioxidants defenses in order to protect from tissue damage caused by hypoxia and reperfusion, but also that caused by environmental contamination and that the oxidative damage control in hypoxic conditions has resulted in an adaptive condition in hypoxic-tolerant freshwater turtle species, in order to better tolerate the release of contaminated effluents resulting from human activity. © 2013 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)