79 resultados para stem cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies with mesenchymal stem cells (MSCs) have been developed in many species because of its ability to differentiate into other mesoderm lineages, capacity of self-regeneration, low immunogenicity, paracrine, anti-inflamatory, immunomodulatory and antiapoptotic effects which make then a promissory source to be used in therapeutic strategies. The aim of this study is to report the technique of harvest of bone marrow (BM) in the coxal tuberosity (CT) of buffaloes. For this, the animals were selected, identified and contained in a stock. Then trichotomy was performed in the region corresponding to the CT. After identifying the anatomic site it was performed antisepsis, local anesthetic block and introduction of a myelogram's needle (Lang(R)) for BM aspiration. Once the needle was firmly fixed in the CT, the mandril was removed and proceeded to BM aspiration with a syringe (20 mL) containing 1 ml of heparin at 1000 IU / mL and 1 mL of PBS. After the collection, each sample collected was manually homogenized, identified and referred to the LRACT - FMVZ / UNESP-BRAZIL for the correct processing. The anatomical site tested showed to be an alternative site of harvest of BM once provided the appropriate isolation and culture of the mononuclear fraction. Moreover, the procedure was performed without difficulty and with great security. Based on this, it can be conclude that CT is an excellent anatomical site for isolation and culture of MSCs and the proposed technique is viable and feasible to be held in buffaloes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, much attention has been devoted to the renewal of knowledge about Stem Cells and Cell Therapy in domestic species. In this sense, the present work aimed to develop a methodology for collecting, processing and cultivation of mesenchymal stem cells obtained from bone marrow of coxal tuberosity in buffaloes. The collection was performed using a Komiyashiki needle, which was introduced in the coxal tuberosity and the bone marrow aspirated into a heparinized syringe with the aid of negative pressure. Directly after collection samples were processed at the laboratory at FMVZ - UNESP. The samples took approximately 32 days to reach 80% confluence, when the first passage and differentiation was performed. To confirm the mesenchymal origin, cells were induced to differentiate into adipogenic and osteogenic lineages. Samples showed morphological changes during differentiation protocol, but not all presented production of extracellular deposits of calcium or intracellular fat droplets, observed after staining with Alizarin Red and Oil Red respectively. Compared with the material obtained from other species and processed in the same laboratory, the primary culture was longer. Therefore, more studies are needed to standardize the age of animals used and to test other inducers of cell differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the improvement in quality of life of animals, it is increasingly frequent clinical care of elderly patients, which present renal disorders, including chronic renal failure. Recent studies report the use of stem cells to treat renal failure, which would improve the levels of urea and creatinine, and in renal ultrasound evaluation. With the present work, the idea is to report a case of ultrasonographic evaluation in a patient with chronic renal failure, liver disease and splenic nodule, which underwent stem cell therapy, where there was an improvement in the sonographic evaluation of part of the liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scaffolds of chitosan and collagen can offer a biological niche for the growth of adipose derived stem cells (ADSC). The objective of this work was to characterize the physico-chemical properties of the scaffolds and the ADSC, as well as their interactions to direct influences of the scaffolds on the behavior of ADSC. The methodology included an enzymatic treatment of fat obtained by liposuction by collagenase, ASDC immunophenotyping, cell growth kinetics, biocompatibility studies of the scaffolds analyzed by the activity of alkaline phosphatase (AP), nitric oxide (NO) determination by the Griess-Saltzman reaction, and images of both optical and scanning electron microscopy of the matrices. The extent of the crosslinking of genipin and glutaraldehyde was evaluated by ninhydrin assays, solubility tests and degradation of the matrices. The results showed that the matrices are biocompatible, exhibit physical and chemical properties needed to house cells in vivo and are strong stimulators of signaling proteins (AP) and other molecules (NO) which are important in tissue healing. Therefore, the matrices provide a biological niche for ADSC adhesion, proliferation and cells activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idiopathic dilated cardiomyopathy (IDC) is one of the major public health problems in the western world. Patients with IDC in functional class IV (New York Health Association - NYHA), even after therapeutic optimization, have high mortality. Stem cell therapy has emerged as a potential therapeutic option for cell death-related heart diseases and several positive effects were assigned to cell therapy in cardiomyopathy. The aim of this study was identify short-term result of cell transplantation in idiopathic dilated cardiomyopathy patients (IDC) who were treated by transplantation of autologous bone marrow mononuclear cells (BMMC). Intracoronary injections of autologous BMMC were performed in eight patients with severe ventricle dysfunction (mean of left ventricle ejection fraction – LEVF=20.03%), cardiac mass muscle around 156.2 g and NYHA between III and IV grades, other 8 IDC patients received placebo. The IDCs were followed - up for one and two years, by magnetic resonance imaging (MRI). The results after one year showed significant improvement in LVEF (mean=181.4) and muscle mass increasing (mean=181.4 g), after two years the LVEF continued improving, reaching a mean of 32.69% and the cardiac muscle mass kept stable (mean=179.4 g). Excepted for one patient, all the other had improvement in the NYHA functional class. The placebo group did not show any improvement. We believe that BMMC implant may be a beneficial therapeutic option for IDC patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes interferes with bone formation and impairs fracture healing, an important complication in humans and animal models. The aim of this study was to examine the impact of diabetes on mesenchymal stem cells (MSCs) during fracture repair.Fracture of the long bones was induced in a streptozotocin-induced type 1 diabetic mouse model with or without insulin or a specific TNF alpha inhibitor, pegsunercept. MSCs were detected with cluster designation-271 (also known as p75 neurotrophin receptor) or stem cell antigen-1 (Sca-1) antibodies in areas of new endochondral bone formation in the calluses. MSC apoptosis was measured by TUNEL assay and proliferation was measured by Ki67 antibody. In vitro apoptosis and proliferation were examined in C3H10T1/2 and human-bone-marrow-derived MSCs following transfection with FOXO1 small interfering (si)RNA.Diabetes significantly increased TNF alpha levels and reduced MSC numbers in new bone area. MSC numbers were restored to normal levels with insulin or pegsunercept treatment. Inhibition of TNF alpha significantly reduced MSC loss by increasing MSC proliferation and decreasing MSC apoptosis in diabetic animals, but had no effect on MSCs in normoglycaemic animals. In vitro experiments established that TNF alpha alone was sufficient to induce apoptosis and inhibit proliferation of MSCs. Furthermore, silencing forkhead box protein O1 (FOXO1) prevented TNF alpha-induced MSC apoptosis and reduced proliferation by regulating apoptotic and cell cycle genes.Diabetes-enhanced TNF alpha significantly reduced MSC numbers in new bone areas during fracture healing. Mechanistically, diabetes-enhanced TNF alpha reduced MSC proliferation and increased MSC apoptosis. Reducing the activity of TNF alpha in vivo may help to preserve endogenous MSCs and maximise regenerative potential in diabetic patients.