34 resultados para Melancia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The roots' powder of timbo species collected in different regions of Amazonia that were tested in larvae groupings, didn't produce differential significative effects in two strains of Musca domestica. The two species with the greater number of plants used in the trial were Derris urucu and Derris nicou; the individuals from the species came from regions considered as "forestal refugies" during the Amazonian pleistocene. Among each species the plants varied since that inefficient to control, until plants lethals to the fies. This differential capacity for larvae control among plants of the same species, originated from different regions, suggests that both species had their populations isolated, during the quaternary epoch. In regions or "forestal refugies", where both species were represented, D. urucu was superior to D. nicou in the capacity to control larvae. While among plants from F region (Peruvian-East refuge) of the State of Acre, the two species had convergence in the values of damage to larvae groupings. Among the another species, Derris sp. (yellow timbo or watermelon timbo) didn't show differences in larvae control between samples from the two regions; while the species that was introduced in the Amazonia Denis elleptica showed damage in the larvae groupings similar to the most effective plants of D. nicou and D. urucu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nematodes severely attack net melon plants under protected cultivation conditions. The objective of this research was to select rootstocks with resistance to Meloidogyne incognita and M. javanica. The experiment was carried out under greenhouse conditions from October 2010 to April 2011 in Jaboticabal, Sao Paulo state, Brazil. Thirty-three cucurbitaceous genotypes were investigated as rootstocks; melons: CNPH 01-930 (Cucumis melo var. flexuosus), CNPH 01-962, 01-963 CNPH (Cucumis melo var. conomon), cvs. Gaucho Redondo, Gaucho Comprido, Redondo Amarelo, Gulfcoast, Chilton, Bonus no. 2, Fantasy; watermelons: cv. Charleston Gray, Progenie da Coreia (Citrullus lanatus); pumpkins: cvs. Mra. Ma, Ornamental, Howden, Mammoth, Kururu, Goianinha (Cucurbita moschata); gourd: Abobora de Porco, cvs. Maranhao, Brasileirinha (Lagenaria siceraria); squash: cv. Pataca Gigante (Cucurbita maxima); cucumber: cvs. Caipira, Branco Meio Comprido, Curumim (Cucumis sativus); loofah: Metro, Semente Branca, Semente Preta (Luffa cylindrica); wax gourd (Benincasa hispida); pumpkin rootstock: Hybrid cv. Keij; snake gourd (Trichosanthes cucumerins) and musk cucumber (Sicana odorifera). To evaluate the resistance, seedlings were transplanted to pots and the root inoculated with 3,000 eggs and second stage juveniles of M. incognita and M. javanica. Fifty days after the inoculation, the plants were evaluated for nematode resistance by means of the reproduction factor. The grafting compatibility between net melon cvs. Bonus no. 2 and Fantasy and the rootstocks previously characterized as resistant were evaluated by means of 60 graftings. CNPH 01-962, CNPH 01-963 and melon 'Gaucho Redondo', were considered resistant to M. incognita. Melon 'Redondo Amarelo', watermelon 'Charleston Gray', watermelon Progenie da Coreia, Trichosanthes cucumerins were considered resistant to M. javanica. Benincasa hispida was resistant to M. javanica and M. incognita. The compatibility between net melons and resistant rootstocks was higher than 98%.