34 resultados para Junções íntimas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Usually organic polymeric diodes are made with a semiconductor layer placed between two electrodes in a sandwich-like architecture, where the electrodes are deposited on the surfaces of a polymeric semiconductor film. This methodology leads to two main problems: i) the polymeric film top surface is rough and irregular, resulting in non-uniform electric field into the device; ii) during the deposition of metallic electrode in the top surface polymeric film, by thermal evaporation, occurs the diffusion of metal atoms into the polymeric film, changing the material electronic structure. Thus, the metal-semiconductor junction is not well defined, which is essential for the production of good quality Schottky diode, which exhibits ideality factor close to the unity and low turn-on voltage. In order to avoid these two problems, in the present research was proposed to manufacture an organic diode with the semiconductor polymeric layer deposited over bimetallic (gold and aluminum) interdigitated electrodes. The doping of the active layer was performed by immersing the device in hydrochloric acid solution with pH 2 during different times in order to promote different doping levels of the semiconductor polymer. Was verified that the proposed diode, which exhibits well-defined metal-semiconductor junction, operates as a Schottky diode, with good ideality factor, 10 ± 3, and low turn-on voltage, 1,2 ± 0,2 V, in comparison with conventional organic polymeric diodes. Contrasting with the ideality factor and turn-on voltage, the diode rectification ratio was obtained as 7, a value lower than the expected for a good organic diode. Was also showed that the diode characteristics were dependent on the semiconductor polymer doping level, and that the diode characteristics were optimized with doping promoted by immersion in the acid solution for times longer than 50 s. Furthermore, as was showed that the diodes properties are dependent on the semiconductor...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)