18 resultados para Joints


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this work comprises the detailed mapping of the coastal zone of the south coast of the State of Rio Grande do Norte. The emphasis of the study is the units of beachrocks and the features of the physical environment associated. The mapping of the beachrocks and of the adjacent coastal features is justified, among other aspects, by the fact that the beachrocks constitute an important protection agent against the sea erosion. By one side, they dissipate the energy of the sea waves and make possible the imprisonment of sediments in the foreshore. The beachrocks in the studied area are constituted of discontinuous strips, parallel to the coast line presenting emerged in some places, even in the highest tides, entirely submerged or partially buried by coastal sediments. These sandstones compose the landscape of big part of the coast and they are responsible for the partial dissipation of the energy of the waves on the studied coast. The methodology used in this work consisted of different techniques were used, as the use of aerial pictures of small format (FAPEFs), acquisition of data of system of global positioning (GPS) and later elaboration of thematic maps and of digital models of soil (MDTs). The results obtained in the mapping of the use and occupation of the soil, demonstrate the existence of strong human pressure in the coastal area (built lots and no built), occupying about 54,74% of built areas. This problem has been taking to degradation risks due to the inconsequent expansion of divisions into lots and tourist enterprises. The MDT came as an excellent resource, as visual as functional, being possible to visualize several angles and to act in three dimensions the relief of the area in study, as well as to identify the present features in the coastal area. By the importance of the bodies of beachrocks as a protection agent against the coastal erosion, faces were delimited in the sandstones based in geometric criteria, classifying them in, central face, outside face, inside face, break and undermiming. These last two associates to the erosion and washout in the base of these bodies. Field data indicate clearly that the most important process in the fracturing of the bodies is associated with mechanisms related to the gravity, being the joints formed by processes of gravitational sliding. Finally, the mapping of the coastal zone starting from aerial pictures of small format it made possible the identification of the elements that compose the beach strip, for accomplishing with larger detailed level and by presenting a better monitoring of the dynamics of the coastal zone

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural knowledge of the western portion of the Potiguar Basin is still in its infancy, especially these related to NW-trending fault systems. This paper analyzes the Poço Verde-Caraúbas Fault System, which was initially recognized in subsurface. The activities involved in this study correspond to remote-sensing analysis and, in particular, to the geometric and kinematic analysis of post-rift sequences of the basin. In addition, the study aimed to determine the stress fields operating in the area. The studies were carried out in an area of 1,000 km², located in the western portion of Potiguar Basin along the Poço Verde-Caraúbas Fault System, Rio Grande do Norte State. The remote sensing imagery indicates a predominance of NW-SE-trending lineaments, consistent with the fault system under study, followed by the NE-SW, N-S and E-W directions. The tectonic structures mapped were analyzed only in outcrops of the Jandaíra Formantion. They are joints (filled or not) in all directions, but with predominance of the NW-trending joints. Faults are usually N-S-trending normal faults and NW-SE and NE-SW-trending strike-slip faults. Geodynamic analysis identified two tectonic stress fields: the first field, "Field 1" is represented by an N-S-trending horizontal compression and E-W-trending horizontal extension. This field affected the Potiguar Basin at least until the Miocene. The second field, "Field 2", is represented by an E-W-trending horizontal compression and N-S-trending horizontal extension. This is the present-day stress field and has affected the Potiguar basin since the Pliocene

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tectonics activity on the southern border of Parnaíba Basin resulted in a wide range of brittle structures that affect siliciclastic sedimentary rocks. This tectonic activity and related faults, joints, and folds are poorly known. The main aims of this study were (1) to identify lineaments using several remotesensing systems, (2) to check how the interpretation based on these systems at several scales influence the identification of lineaments, and (3) to contribute to the knowledge of brittle tectonics in the southern border of the Parnaíba Basin. The integration of orbital and aerial systems allowed a multi-scale identification, classification, and quantification of lineaments. Maps of lineaments were elaborated in the following scales: 1:200,000 (SRTM Shuttle Radar Topographic Mission), 1:50,000 (Landsat 7 ETM+ satellite), 1:10,000 (aerial photographs) and 1:5,000 (Quickbird satellite). The classification of the features with structural significance allowed the determination of four structural sets: NW, NS, NE, and EW. They were usually identified in all remote-sensing systems. The NE-trending set was not easily identified in aerial photographs but was better visualized on images of medium-resolution systems (SRTM and Landsat 7 ETM+). The same behavior characterizes the NW-trending. The NS-and EW-trending sets were better identified on images from high-resolution systems (aerial photographs and Quickbird). The structural meaning of the lineaments was established after field work. The NEtrending set is associated with normal and strike-slip faults, including deformation bands. These are the oldest structures identified in the region and are related to the reactivation of Precambrian basement structures from the Transbrazilian Lineament. The NW-trending set represents strike-slip and subordinated normal faults. The high dispersion of this set suggests a more recent origin than the previous structures. The NW-trending set may be related to the Picos-Santa Inês Lineament. The NS-and EW-trending sets correspond to large joints (100 m 5 km long). The truncation relationships between these joint sets indicate that the EW-is older than the NS-trending set. The methodology developed by the present work is an excellent tool for the understanding of the regional and local tectonic structures in the Parnaíba basin. It helps the choice of the best remote-sensing system to identify brittle features in a poorly known sedimentary basin