18 resultados para Fermentação


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work a Plackett-Burman Design with 8 factors and 12 trials in 2 levels with 3 repetitions at the center point was used in order to investigate the influence of the concentration of chitosan, peptone, yeast extract, NaNO3, K2HPO4, KCl, MgSO4.7H2O and FeSO4 on chitosanase production by Metarhizium anisopliae. Runs were carried out using submerged discontinuous cultivation for enzyme production. The results of the Plackett & Burman Design showed that only two factors, chitosan concentration as well as FeSO4 had influence on chitosanolytic activity, while the increase in concentration of other factors not contributed significantly to the quitosanolítica activity. Cultivation medium optimization for enzyme production was carried out using a Composite Central Design, with the most important factors for chitosanolytic activity (chitosan and FeSO4), in accordance with Plackett & Burman Design, and keeping the other nutrients in their minimum values. On this other design, it was taken the highest limit in Plackett & Burman Design as the lowest limit (-1) to FeSO4 factor. The results showed that the enzyme production was favoured by increasing the chitosan concentration and by decreasing FeSO4. Maximum production for chitosanolytic activity was about 70.0 U/L and was reached in only 18 h of fermentation, a result about twenty-eight times greater than a former study using the same microorganism (about 2.5 U/L at 48 h)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the significant share of food costs of poultry production, it is necessary to use strategies and techniques to maximize the utilization and biological value of the components of the diets, keeping constant or improving animal performance. In this context, seeking partial substitution of corn and the best use of the constituents of the diet, the present study aimed to evaluate the effects of inclusion of cashew pomace dehydrated (BCD) and enzyme complex (EC) in the diet on performance and quality eggs of Japanese quails. A total of 200 Japanese quail at 87 days of age, in 25 cages in a completely randomized design in a factorial 2 x 2 + 1 (two levels of cashew bagasse x two levels of enzymes) + control diet without cashew bagasse totaling five treatments with five replicates of eight birds each repetition. The experiment lasted 84 days, divided into four periods of 21 days. The treatments consisted of T1-Ration Control, T2-ration with 7.5% without EC BCD, T3-ration with 7.5% BCD with CE, T4-Ration with 15% BCD without EC and T5-Feed with 15% of BCD with EC. The enzyme complex (EC) is used fermentation product of Aspergillus niger, and cashew bagasse was obtained from the juice industry, passed through drying and crushing process for producing the bran. The performance and egg quality of quails, and performance variables: feed intake (FI), feed conversion ratio per dozen eggs (CAKDZ) and egg mass (CAMO), egg production (OP% bird / day), average egg weight (PMO) and egg mass (MO), and variables were egg quality, specific gravity (SG), Haugh unit (HU), yolk index, and the relationships between components eggs (%albumen,% yolk and %shell). Data were analyzed with the Statistical SAEG (2007). The 7.5 and 15% of cashew bagasse, independent of the enzyme complex decreased feed intake and improved the average egg weight. The two levels with the addition of EC showed significant differences for feed conversion by egg mass. The 7.5 with the addition of enzyme complex obtained the lowest average feed conversion per dozen eggs. The inclusion of up to 15% of cashew bagasse dehydrated with or without addition of enzyme complex in the diet of Japanese quails not interfere in the internal and external quality of eggs. The 7.5 and 15% BCD without added enzyme complex gave better means for specific gravity. Under conditions in which the experiment was conducted, it can be stated that the inclusion of up to 15% of cashew bagasse dehydrated with added enzyme complex feeding quail is economically viable, with the level of 7.5% with the addition of complex enzyme presented the best economic indices

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work investigated the potential of different residual lignocellulosic materials generated in rural and urban areas (coconut fibre mature, green coconut shell and mature coconut shell), and vegetable cultivated in inhospitable environments (cactus) aimed at the production of ethanol, being all materials abundant in the Northeast region of Brazil. These materials were submitted to pretreatments with alkaline hydrogen peroxide followed by sodium hydroxide (AHP-SHP), autohydrolysis (AP), hydrothermal catalyzed with sodium hydroxide (HCSHP) and alkali ethanol organosolv (AEOP). These materials pretreated were submitted to enzymatic hydrolysis and strategies of simultaneous saccharification and fermentation (SSF) and saccharification and fermentation semi-simultaneous (SSSF) by Saccharomyces cerevisiae, Zymomonas mobilis and Pichia stipitis. It was also evaluated the presence of inhibitory compounds (hydroxymethylfurfural, furfural, acetic acid, formic acid and levulinic acid) and seawater during the fermentative process. Materials pretreated with AHP-SHP have resulted in delignification of the materials in a range between 54 and 71%, containing between 51.80 and 54.91% of cellulose, between 17.65 and 28.36% of hemicellulose, between 7.99 and 10.12% of lignin. Enzymatic hydrolysis resulted in the conversions in glucose between 68 and 76%. Conversion yields in ethanol using SSF and SSSF for coconut fibre mature pretreated ranged from 0.40 and 0.43 g/g, 0.43 and 0.45 g/g, respectively. Materials pretreated by AP showed yields of solids between 42.92 and 92.74%, containing between 30.65 and 51.61% of cellulose, 21.34 and 41.28% of lignin. Enzymatic hydrolysis resulted in glucose conversions between 84.10 and 92.52%. Proceeds from conversion into ethanol using green coconut shell pretreated, in strategy SSF and SSSF, were between 0.43 and 0.45 g/g. Coconut fibre mature pretreated by HCSHP presented solids yields between 21.64 and 60.52%, with increased in cellulose between 28.40 and 131.20%, reduction of hemicellulose between 43.22 and 69.04% and reduction in lignin between 8.27 and 89.13%. Enzymatic hydrolysis resulted in the conversion in glucose of 90.72%. Ethanol yields using the SSF and SSSF were 0.43 and 0.46 g/g, respectively. Materials pretreated by AEOP showed solid reductions between 10.75 and 43.18%, cellulose increase up to 121.67%, hemicellulose reduction up to 77.09% and lignin reduced up to 78.22%. Enzymatic hydrolysis resulted in the conversion of glucose between 77.54 and 84.27%. Yields conversion into ethanol using the SSF and SSSF with cactus pretreated ranged from 0.41 and 0.44 g/g, 0.43 and 0.46 g/g, respectively. Fermentations carried out in bioreactors resulted in yields and ethanol production form 0.42 and 0.46 g/g and 7.62 and 12.42 g/L, respectively. The inhibitory compounds showed negative synergistic effects in fermentations performed by P. stipitis, Z. mobilis and S. cerevisiae. Formic acid and acetic acid showed most significant effects among the inhibitory compounds, followed by hydroxymethylfurfural, furfural and levulinic acid. Fermentations carried out in culture medium diluted with seawater showed promising results, especially for S. cerevisiae (0.50 g/g) and Z. mobilis (0.49 g/g). The different results obtained in this study indicate that lignocellulosic materials, pretreatments, fermentative processes strategies and the microorganisms studied deserve attention because they are promising and capable of being used in the context of biorefinery, aiming the ethanol production.