11 resultados para polymer scaffolds, polymer ceramics composites, osteogenic differentiation, osteoblasts, polycaprolactone (PCL), bone tissue engineering

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clay mineral attapulgite is a group of hormitas, which has its structures formed by microchannels, which give superior technological properties classified the industrial clays, clays of this group has a very versatile range of applications, ranging from the drilling fluid for wells oil has applications in the pharmaceutical industry. Such properties can be improved by activating acid and / or thermal activation. The attapulgite when activated can improve by up to 5-8 times some of its properties. The clay was characterized by X-ray diffraction, fluorescence, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy and transmission electron microscopy before and after chemical activation. It can be seen through the results the efficiency of chemical treatment, which modified the clay without damaging its structure, as well as production of polymer matrix composites with particles dispersed atapugita

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer matrix composites offer advantages for many applications due their combination of properties, which includes low density, high specific strength and modulus of elasticity and corrosion resistance. However, the application of non-destructive techniques using magnetic sensors for the evaluation these materials is not possible since the materials are non-magnetizable. Ferrites are materials with excellent magnetic properties, chemical stability and corrosion resistance. Due to these properties, these materials are promising for the development of polymer composites with magnetic properties. In this work, glass fiber / epoxy circular plates were produced with 10 wt% of cobalt or barium ferrite particles. The cobalt ferrite was synthesized by the Pechini method. The commercial barium ferrite was subjected to a milling process to study the effect of particle size on the magnetic properties of the material. The characterization of the ferrites was carried out by x-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM) and vibrating sample magnetometry (VSM). Circular notches of 1, 5 and 10 mm diameter were introduced in the composite plates using a drill bit for the non-destructive evaluation by the technique of magnetic flux leakage (MFL). The results indicated that the magnetic signals measured in plates with barium ferrite without milling and cobalt ferrite showed good correlation with the presence of notches. The milling process for 12 h and 20 h did not contribute to improve the identification of smaller size notches (1 mm). However, the smaller particle size produced smoother magnetic curves, with fewer discontinuities and improved signal-to-noise ratio. In summary, the results suggest that the proposed approach has great potential for the detection of damage in polymer composites structures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal recovery methods, especially steam injection, have been used to produce heavy oils. However, these methods imply that the metallic casing-cement sheath interface is submitted to thermal cycling. As a consequence, cracking may develop due to the thermal expansion mismatch of such materials, which allows the flow of oil and gas through the cement sheath, with environmental and economical consequences. It is therefore important to anticipate interfacial discontinuities that may arise upon Thermal recovery. The present study reports a simple alternative method to measure the shear strength of casing-sheath interfaces using pushthrough geometry, applied to polymer-containing hardened cement slurries. Polyurethane and recycled tire rubber were added to Portland-bases slurries to improve the fracture energy of intrinsically brittle cement. Samples consisting of metallic casing sections surrounded by hardened polymer-cement composites were prepared and mechanically tested. The effect of thermal cycles was investigated to simulate temperature conditions encountered in steam injection recovery. The results showed that the addition of polyurethane significantly improved the shear strength of the casing-sheath interface. The strength values obtained adding 10% BWOC of polyurethane to a Portland-base slurry more than doubled with respect to that of polyurethane-free slurries. Therefore, the use of polyurethane significantly contributes to reduce the damage caused by thermal cycling to cement sheath, improving the safety conditions of oil wells and the recovery of heavy oils

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to evaluate the mechanical properties of polymer matrix composites reinforced with sisal fabric bidirectional tissue (Agave sisalana,) and E-glass fibers, containing the following configuration: a polymer matrix hybrid composite (Polyester Resin orthophalic) reinforced with three (3) layers of glass fibers and alternating-2 (two) layers of bidirectional sisal fabric, and finally a composite of polymer matrix reinforced with five (5) layers of glass fiber mat-type E. For this purpose as first step, the preparation of by sisal, since they are not on the market. The composites were made by manual lamination (Hand lay-up) and evaluated for tensile properties and three point bending both in the dry, and wet conditions aswele as immersed in oil. Macroscopic and microscopic characteristics of the materialsweve awalysed, after the completion of the mechanical tests. After the studies, it was proven that the sisal fiber decreases the tensile stiffness of the material above 50% for both situations studied the tensile strength of the material decreases by approximately 40% for the cases mentioned, and when compared to the specific strength stiffness values drop to 14.6% and 29.02% respectively for the dry state only. Constants for bending the values were are to approximately 50% to 25% for strength and stiffness of the material for the cases dry, wet and immersed in oil. Under the influence of tension fluids do not interfere in the stiffness of the material for the bending tests, the same does not occur with the resistance, and these values are modified only in the cases stiffness and flexural strength

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the current growth in consumption of industrialized products and the resulting increase in garbage production, their adequate disposal has become one of the greatest challenges of modern society. The use of industrial solid residues as fillers in composite materials is an idea that emerges aiming at investigating alternatives for reusing these residues, and, at the same time, developing materials with superior properties. In this work, the influence of the addition of sand, diatomite, and industrial residues of polyester and EVA (ethylene vinyl acetate), on the mechanical properties of polymer matrix composites, was studied. The main objective was to evaluate the mechanical properties of the materials with the addition of recycled residue fillers, and compare to those of the pure polyester resin. Composite specimens were fabricated and tested for the evaluation of the flexural properties and Charpy impact resistance. After the mechanical tests, the fracture surface of the specimens was analyzed by scanning electron microscopy (SEM). The results indicate that some of the composites with fillers presented greater Young s modulus than the pure resin; in particular composites made with sand and diatomite, where the increase in modulus was about 168 %. The composites with polyester and EVA presented Young s modulus lower than the resin. Both strength and maximum strain were reduced when fillers were added. The impact resistance was reduced in all composites with fillers when compared to the pure resin, with the exception of the composites with EVA, where an increase of about 6 % was observed. Based on the mechanical tests, microscopy analyses and the compatibility of fillers with the polyester resin, the use of industrial solid residues in composites may be viable, considering that for each type of filler there will be a specific application

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clay mineral attapulgite is a group of hormitas, which has its structures formed by microchannels, which give superior technological properties classified the industrial clays, clays of this group has a very versatile range of applications, ranging from the drilling fluid for wells oil has applications in the pharmaceutical industry. Such properties can be improved by activating acid and / or thermal activation. The attapulgite when activated can improve by up to 5-8 times some of its properties. The clay was characterized by X-ray diffraction, fluorescence, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy and transmission electron microscopy before and after chemical activation. It can be seen through the results the efficiency of chemical treatment, which modified the clay without damaging its structure, as well as production of polymer matrix composites with particles dispersed atapugita

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer matrix composites offer advantages for many applications due their combination of properties, which includes low density, high specific strength and modulus of elasticity and corrosion resistance. However, the application of non-destructive techniques using magnetic sensors for the evaluation these materials is not possible since the materials are non-magnetizable. Ferrites are materials with excellent magnetic properties, chemical stability and corrosion resistance. Due to these properties, these materials are promising for the development of polymer composites with magnetic properties. In this work, glass fiber / epoxy circular plates were produced with 10 wt% of cobalt or barium ferrite particles. The cobalt ferrite was synthesized by the Pechini method. The commercial barium ferrite was subjected to a milling process to study the effect of particle size on the magnetic properties of the material. The characterization of the ferrites was carried out by x-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM) and vibrating sample magnetometry (VSM). Circular notches of 1, 5 and 10 mm diameter were introduced in the composite plates using a drill bit for the non-destructive evaluation by the technique of magnetic flux leakage (MFL). The results indicated that the magnetic signals measured in plates with barium ferrite without milling and cobalt ferrite showed good correlation with the presence of notches. The milling process for 12 h and 20 h did not contribute to improve the identification of smaller size notches (1 mm). However, the smaller particle size produced smoother magnetic curves, with fewer discontinuities and improved signal-to-noise ratio. In summary, the results suggest that the proposed approach has great potential for the detection of damage in polymer composites structures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramic composites produced with polymerics precursors have been studied for many years, due to the facility of obtaining a complex shape, at low temperature and reduces cost. The main objective of this work is to study the process of sintering of composites of ceramic base consisting of Al2O3 and silicates, reinforced for NbC, through the technique of processing AFCOP, as well as the influence of the addition of LZSA, ICZ and Al as materials infiltration in the physical and mechanical properties of the ceramic composite. Were produced ceramic matrix composites based SiCxOy e Al2O3 reinforced with NbC, by hidrosilylation reaction between D4Vi and D1107 mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. The specimens produced were pyrolised at 1200, 1250 and 1400°C and infiltred with Al, ICZ and LZSA, respectively. Density, porosity, flexural mechanical strength and fracture surface by scanning electron microscopy were evaluated. The microstructure of the composites was investigated by X-ray diffraction to identify the presence of crystalline phases. The composites presented apparent porosity varying of 31 up to 49% and mechanical flexural strength of 14 up to 34 MPa. The infiltration process improviment of the densification and reduction of the porosity, as well as increased the values of mechanical flexural strength. The obtained phases had been identified as being Al3Nb, NbSi2, Nb5S3, Nb3Si and NbC. The samples that were submitted the infiltration process presented a layer next surface with reduced pores number in relation to the total volume

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are known as a population of multi-potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. Several applications of the study of EC can be emphasized the therapeutic techniques such as guided bone regeneration by implantation of EC in the affected site, without the need for bone grafts, using titanium as a vehicle. The process of cryopreservation is essential for the maintenance of cell cultures, since the cell line is frozen, it can be maintained in liquid nitrogen for an indefinite period and then thawed for therapeutic or experimental purposes. The aim of this study was to isolate a population of MSCs derived from the subendothelium of the umbilical vein human (MSCs-SUVH) to assess cytogenetic analysis by the possibility of appearance of chromosomal changes in two different situations: MSCs-SUVH regarding the process of cryopreservation and MSCs-SUVH grown on the surface of titanium. Flow cytometry analysis revealed that, this cell population was positive for the markers CD29, CD73 and CD90, but there was no expression of hematopoietic lineage markers, such as CD14, CD34 and CD45 and demonstrated capacity for osteogenic differentiation. The chromosomes obtained from the primary culture of MSCs-SUVH were analyzed by GTW banding technique, and results are described as guidelines to ISCN 2005. There was not the emergence of clonal chromosomal changes in the MSCs-SUVH in different situations analyzed. However one of the strings presented a balanced paracentric inversion, probably a cytogenetic constitutional alterations, which was present before and after the experimental situations that the MSCs-SUVH was submitted

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramic composites produced with polymerics precursors have been studied for many years, due to the facility of obtaining a complex shape, at low temperature and reduces cost. The main objective of this work is to study the process of sintering of composites of ceramic base consisting of Al2O3 and silicates, reinforced for NbC, through the technique of processing AFCOP, as well as the influence of the addition of LZSA, ICZ and Al as materials infiltration in the physical and mechanical properties of the ceramic composite. Were produced ceramic matrix composites based SiCxOy e Al2O3 reinforced with NbC, by hidrosilylation reaction between D4Vi and D1107 mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. The specimens produced were pyrolised at 1200, 1250 and 1400°C and infiltred with Al, ICZ and LZSA, respectively. Density, porosity, flexural mechanical strength and fracture surface by scanning electron microscopy were evaluated. The microstructure of the composites was investigated by X-ray diffraction to identify the presence of crystalline phases. The composites presented apparent porosity varying of 31 up to 49% and mechanical flexural strength of 14 up to 34 MPa. The infiltration process improviment of the densification and reduction of the porosity, as well as increased the values of mechanical flexural strength. The obtained phases had been identified as being Al3Nb, NbSi2, Nb5S3, Nb3Si and NbC. The samples that were submitted the infiltration process presented a layer next surface with reduced pores number in relation to the total volume

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regeneration of bone defects with loss of substance remains as a therapeutic challenge in the medical field. There are basically four types of grafts: autologous, allogenic, xenogenic and isogenic. It is a consensus that autologous bone is the most suitable material for this purpose, but there are limitations to its use, especially the insufficient amount in the donor. Surveys show that the components of the extracellular matrix (ECM) are generally conserved between different species and are well tolerated even in xenogenic recipient. Thus, several studies have been conducted in the search for a replacement for autogenous bone scaffold using the technique of decellularization. To obtain these scaffolds, tissue must undergo a process of cell removal that causes minimal adverse effects on the composition, biological activity and mechanical integrity of the remaining extracellular matrix. There is not, however, a conformity among researchers about the best protocol for decellularization, since each of these treatments interfere differently in biochemical composition, ultrastructure and mechanical properties of the extracellular matrix, affecting the type of immune response to the material. Further down the arsenal of research involving decellularization bone tissue represents another obstacle to the arrival of a consensus protocol. The present study aimed to evaluate the influence of decellularization methods in the production of biological scaffolds from skeletal organs of mice, for their use for grafting. This was a laboratory study, sequenced in two distinct stages. In the first phase 12 mice hemi-calvariae were evaluated, divided into three groups (n = 4) and submitted to three different decellularization protocols (SDS [group I], trypsin [Group II], Triton X-100 [Group III]). We tried to identify the one that promotes most efficient cell removal, simultaneously to the best structural preservation of the bone extracellular matrix. Therefore, we performed quantitative analysis of the number of remaining cells and descriptive analysis of the scaffolds, made possible by microscopy. In the second stage, a study was conducted to evaluate the in vitro adhesion of mice bone marrow mesenchymal cells, cultured on these scaffolds, previously decellularized. Through manual counting of cells on scaffolds there was a complete cell removal in Group II, Group I showed a practically complete cell removal, and Group III displayed cell remains. The findings allowed us to observe a significant difference only between Groups II and III (p = 0.042). Better maintenance of the collagen structure was obtained with Triton X-100, whereas the decellularization with Trypsin was responsible for the major structural changes in the scaffolds. After culture, the adhesion of mesenchymal cells was only observed in specimens deccelularized with Trypsin. Due to the potential for total removal of cells and the ability to allow adherence of these, the protocol based on the use of Trypsin (Group II) was considered the most suitable for use in future experiments involving bone grafting decellularized scaffolds