2 resultados para high throughput sequencing

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern wireless systems employ adaptive techniques to provide high throughput while observing desired coverage, Quality of Service (QoS) and capacity. An alternative to further enhance data rate is to apply cognitive radio concepts, where a system is able to exploit unused spectrum on existing licensed bands by sensing the spectrum and opportunistically access unused portions. Techniques like Automatic Modulation Classification (AMC) could help or be vital for such scenarios. Usually, AMC implementations rely on some form of signal pre-processing, which may introduce a high computational cost or make assumptions about the received signal which may not hold (e.g. Gaussianity of noise). This work proposes a new method to perform AMC which uses a similarity measure from the Information Theoretic Learning (ITL) framework, known as correntropy coefficient. It is capable of extracting similarity measurements over a pair of random processes using higher order statistics, yielding in better similarity estimations than by using e.g. correlation coefficient. Experiments carried out by means of computer simulation show that the technique proposed in this paper presents a high rate success in classification of digital modulation, even in the presence of additive white gaussian noise (AWGN)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims to use a different hydrodynamic condition applied to a new design of mixer-settler on treating wastewater produced by petroleum industry, called MDIF (Misturador-Decantador à Inversão de Fases/ Mixer-Settler based on Phase Inversion MSPI). The use of this different hydrodynamic behaviour is possible due to vertical disposition of the device and the principle of Phase Inversion that controls the MDIF, providing the generation (creation) of a cascade of drops, into an organic layer, that works as micro-decanters, thus making possible the formation of a bed of non-coalesced drops, called Bed Formation . The use of this new hydrodynamics condition allows to increase the residence time of the oil carrier drops, into an organic layer, and the device can treat a greater volume of wastewater. In view of to get this condition it is necessary to operate at high throughput (58,6 m3.m-2.h-1). By results, the condition of Bed Formation is the best one to be used when MSPI operates with throughput up to 58,6 m3.m-2.h-1. The results using the condition of Bed Formation show that increasing the height of the bed of non-coalesced drops and/or decreasing the volumetric ratio (O/A) an increase of the separation efficiency is detected