19 resultados para Toras de madeira - Aquecimento

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint flat black for better absorption of sunlight. The system worked on a thermosiphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. It was determined the most efficient configuration for the correct purpose. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work regards to the structural conception as a formal element of design in wood architecture. On this approach, the group of projects studied is formed by some realized works of two important Brazilian architects: Severiano Porto and Marcos Acayaba. The time interval comprises the period from 1971 to 1997, which correspond respectively to the years of the creation of first and the last of the analyzed constructions. The research perspective concerns to the relationship between the parts, the whole and the building techniques adopted in each project. Moreover, the analysis focuses on the structure as the link among the different projectual ideas. Thus, the research method firstly includes a survey of specific bibliographies and documents which refer to the structural conception in wood architecture. Secondly,the buildings are analyzed according to the methods of architectural composition discussed through this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is about the use of the coconut´s endocarp (nucifera linn) and the waste of derivatives of wood and furniture as raw material to technological use. In that sense, the lignocellulosic waste is used for manufacture of homogeneous wood sheet agglomerate (LHWS) and lignocellulosic load which take part of a polymeric composite with fiber glass E (GFRP-WC). In the manufacturing of the homogeneous wood sheet agglomerate (LHWS), it was used mamona´s resin as waste s agglutinating element. The plates were taken up in a hydraulic press engine, heated, with temperature control, where they were manufactured for different percentage of waste wood and coconuts nucífera linn. Physical tests were conducted to determine the absorption of water, density, damp grade (in two hours and twenty-four hours), swelling thickness (in two hours and twenty-four hours), and mechanical tests to evaluate the parallel tensile strength (internal stick) and bending and the static (steady) flexural. The physical test´s results indicate that the LHWS can be classified as bonded wood plate of high-density and with highly water resistant. In the mechanical tests it was possible to establish that LHWS presents different characteristics when submitted to uniaxial tensile and to the static (steady) flexural, since brittle and elasticity module had a variation according to the amount of dry endocarp used to manufacture each trace of LHWS. The GFRP-WC was industrially manufactured by a hand-lay-up process where the fiber glass E was used as reinforcement the lignocellulósic´s waste as load. The matrix was made with ortofitalic unsaturated polyester resin. Physical and mechanical tests were performed in presence of saturated humidity and dry. The results indicated good performance of the GFRP-WC, as traction as in flexion in three points. The presence of water influenced the modules obtained in the flexural and tensile but there were no significant alteration in the properties analyzed. As for the fracture, the analysis showed that the effects are more harmful in the presence of damp, under the action of loading tested, but despite this, the fracture was well defined starting in the external parts and spreading to the internal regions when one when it reaches the hybrid load

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heating rate is one of the main variables that determine a fire cycle. In industrial processes that use high temperatures, greater fire great can reduce the cost of production and increase productivity. The use of faster and more efficient fire cycles has been little investigated by the structural ceramic industry in Brazil. However, one of the possibilities that aims at modernizing the sector is the use of roller kilns and the inclusion of natural gas as fuel. Thus, the purpose of this study is to investigate the effect of heating rate on the technological properties of structural ceramic products. Clay raw materials from the main ceramic industries in the state of Rio Grande do Norte were characterized. Some of the raw materials characterized were formulated to obtain the best physical and mechanical properties. Next, raw materials and formulations were selected to study the influence of heating rate on the final properties of the ceramic materials. The samples were shaped by pressing and extrusion and submitted to rates of 1 °C/min, 10 °C/min and 20 °C/min, with final temperatures of 850 °C, 950 °C and 1050 °C. Discontinuous cycles with rates of 10 °C/min or 15 °C/min up to 600 °C and a rate of 20 °C/min up to final temperature were also investigated. Technological properties were determined for all the samples and microstructural analysis was carried out under a number of fire conditions. Results indicate that faster and more efficient fire cycles than those currently in practice could be used, limiting only some clay doughs to certain fire conditions. The best results were obtained for the samples submitted to slow cycles up to 600 °C and fast fire sinterization up to 950 °C. This paper presents for the first time the use of a fast fire rate for raw materials and clay formulations and seeks to determine ideal dough and processing conditions for using shorter fire times, thus enabling the use of roller kilns and natural gas in structural ceramic industries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical resistive heating (ERH) is a thermal method used to improve oil recovery. It can increase oil rate and oil recovery due to temperature increase caused by electrical current passage through oil zone. ERH has some advantage compared with well-known thermal methods such as continuous steam flood, presenting low-water production. This method can be applied to reservoirs with different characteristics and initial reservoir conditions. Commercial software was used to test several cases using a semi-synthetic homogeneous reservoir with some characteristics as found in northeast Brazilian basins. It was realized a sensitivity analysis of some reservoir parameters, such as: oil zone, aquifer presence, gas cap presence and oil saturation on oil recovery and energy consumption. Then it was tested several cases studying the electrical variables considered more important in the process, such as: voltage, electrical configurations and electrodes positions. Energy optimization by electrodes voltage levels changes and electrical settings modify the intensity and the electrical current distribution in oil zone and, consequently, their influences in reservoir temperature reached at some regions. Results show which reservoir parameters were significant in order to improve oil recovery and energy requirement in for each reservoir. Most significant parameters on oil recovery and electrical energy delivered were oil thickness, presence of aquifer, presence of gas cap, voltage, electrical configuration and electrodes positions. Factors such as: connate water, water salinity and relative permeability to water at irreducible oil saturation had low influence on oil recovery but had some influence in energy requirements. It was possible to optimize energy consumption and oil recovery by electrical variables. Energy requirements can decrease by changing electrodes voltages during the process. This application can be extended to heavy oil reservoirs of high depth, such as offshore fields, where nowadays it is not applicable any conventional thermal process such as steam flooding

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to characterize the thermal profile of wood fired oven used by the red ceramic industry in Parelhas, in the Seridó region/RN, aiming to propose structural interventions that can contribute to increasing productivity and product quality, optimize wood consumption and mitigate existing losses during the burning process. The study was conducted at Cerâmica Esperança in the city of Parelhas -RN, Brazil, during the period from August 2012 to September 2013. Four treatments were performed with three replicates, ie, with, a total of 12 experimental units (burnings). In the first stage 4 treatments were performed with three replicates, totaling 12 experimental units (firings). In the second stage 2 treatments were performed with three replications, totaling 6 experimental units (firings). The physical characteristics of the wood were analyzed using standard NBR 11941 and NBR 7190 for basic density and moisture, respectively. The clay was used as a reference parameter for distinguishing treatments. For both the analysis and characterization was carried out using techniques of fluorescence X (XRF) rays, X-ray diffraction (XRD) analysis, particle size analysis (FA). In the first and second stages were monitored: the time during the firing process, the amount of wood used at each firing, the number of parts enfornadas for subsequent determination of the percentages of losses, but also product quality. To characterize the thermal profile of the oven, we measured the temperature at 15 points scored in the surface charge put into the oven. Measurements were taken every 30 minutes from preheat until the end of burning, using a pyrometer laser sight sighting from preheating until the end of burning. In the second step 12 metal cylinders distributed on the oven walls, and the cylinder end walls 8 of the furnace 2 and rollers on each side walls are installed equidistant to 17 cm from the soil and the surface 30 of the wall are installed. The cylinders distributed on the front were placed 50 cm above the furnace, and the base of the oven 20 cm distant from the ground. 10 also thermocouples were installed, and five thermocouples distributed 1.77 cm above the combustion chambers, and one thermocouple on each side, and three thermocouples in front of the oven. We carried out the measurements of the temperatures every 1 hour during the burning two hours in cooling the cylinders with a pyrometer and thermocouples for dattaloger. These were fixed with depth of 30 cm from the wall. After statistical analysis it was found that: the thermal profile of the furnace surface and at different heights was heterogeneous; and the ranges of density and moisture content of wood are within recommended for use as an energy source standards. We conclude that even at low temperatures reached during firing there was a significant production of good quality products, this is due to high concentrations of iron oxide and potassium oxide found in clay, which lowers the melting point of the piece. The average burn time for each step varied 650-2100 minutes wood consumption was on average 20 m3, product quality was on average 16% of first quality, 70% second, third and 5% to 10% loss . The distance between the wire and the surface of the oven was a significant parameter for all treatments, but with different variations, meaning that the wire should not be so generic and unique form, used as a criterion for completion of the burn process. The central part of the furnace was the area that reached higher temperature, and in a unified manner, with the highest concentration of top quality products. The ideal temperature curve, which provided the highest quality of ceramic products was achieved in the central part of the furnace

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Oil Measurement Evaluation Laboratory (LAMP), located in the Federal University of Rio Grande do Norte (UFRN), has as main goal to evaluate flow and BS&W meters, where the simulation of a bigger number of operation variable in field, guarantees a less uncertain evaluation. The objective of this work is to purpose a heating system design and implementation, which will control the temperature safely and efficiently in order to evaluate and measure it. Temperature is one of the variables which influence the flow and BS&W accurate measurement, directly affecting the fluid viscosity and density in the experiment. To project the heating system it is of great importance to take the laboratory requirements, conditions and current restrictions into consideration. Three alternatives were evaluated: heat exchanger, internal resistance and external resistance. After the analyses are made in order to choose the best alternative for the heating system in the laboratory, control strategies were determined for it, PID control methods in combination with fuzzy logic were used. Results showed a better performance with fuzzy logic than with classic PID

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An solar alternative system for water heating is presented. Is composed for one low cost alternative collector and alternative thermal reservoir for hot water storing. The collector of the system has box confectioned in composite material and use absorption coils formed for PVC tubes. The box of hot water storage was confectioned from a plastic polyethylene drum used for storage of water and garbage, coated for a cylinder confectioned in fiber glass. The principle of functioning of the system is the same of the conventionally. Its regimen of work is the thermosiphon for a volume of 250 liters water. The main characteristic of the system in considered study is its low cost, allowing a bigger socialization of the use of solar energy. It will be demonstrated the viabilities thermal, economic and of materials of the system of considered heating, and its competitiveness in relation to the available collectors commercially. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be shown that such system of alternative heating, that has as main characteristic its low cost, presents viabilities thermal, economic and of materials

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It s presented a solar collector to be used in a system for heating bath water, whose main characteristic is its low cost. The collector consists of five plates of PVC with 10 mm thick, 200 mm in width and 1400mm in length, with an area equal to 1.4 square meters. The plates were connected in parallel to the ends of PVC tubes of  40 mm and 32 mm. The plates were coated on one side with aluminum sheets of soft drinks and beers cans open. The system worked on a thermosiphon and was tested in two configurations: the plates uncoated and coated with aluminum material, to determine the influence of material on the efficiency of the collector. For both configurations was used EPS plates below the surface to minimize heat losses from the botton. The thermal reservoir of the heating system is, also, alternative and low cost, since it was constructed from a polyethylene tank for storing water, with volume of 150 end 200 liters. It will be presented the thermal efficiency, heat loss, water temperature of the thermal reservoir at the end of the process and simulation of baths for a house with four residents. The will be demonstrated thermal, economic and material viability of the proposed collector, whose main innovation is the use of recyclables materials, cans of beer and soft drinks, to increase the temperature of the absorber plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are low cost and easy manufacturing and assembly. The system operates under natural convection or thermosiphon. The absorbing surface of the collector is formed by twelve PVC pipes of 25 mm outside diameter connected in parallel via connections in T of the same material. The tubes were covered with absorbing fins made with recycled aluminum cans. We studied eight settings between absorber plate, thermal insulating EPS boards and thermal reservoirs 150 and 200 liters. It was determined the most efficient configuration for the correct purpose. We evaluated thermal parameters that proved the viability of the heating system studied

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the feasibility of using a system of Solar Water Heating (SAS) with low cost, for three configurations. In configurations I and II have the collector grid absorber composed of six PVC tubes placed in parallel on the tile cement. In configuration II, the PVC tubes were transparent cover made of plastic bottles. Configuration III uses a collector composed of 12 black HDPE pipes, supported on four cement tiles 2.44 m x 0.50 m, two by two overlapping and interspersed with a filling of glass wool, comprising an area exposed to the global radiation incident of 2.44 m2, with the top two tiles painted matte black. In this configuration, the HDPE pipes replace conventional PVC pipes painted black. The total cost of SAS for configuration III, the most economical, was around $ 150.00. For the configurations tested the system of operation was thermosyphon collector. The study showed that the proposed systems have good thermal efficiency, are easy to install and handle and have low cost compared to conventional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was studied a system for heating water to be used to obtain water for bathing at home, the absorbing surface of the collector is formed by one plate of polycarbonate. The polycarbonate plate has 6 mm thick, 1.050 mm wide and 1.500 mm long with an area equal to 1,575 m². The plate was attached by its edges parallel to PVC tubes of 32 mm. The system worked under the thermo-siphon and was tested for two configurations: plate absorber with and without isolation of EPS of 30 mm thick on the bottom surface in order to minimize heat losses from the bottom. The tank's thermal heating system is alternative and low cost, since it was constructed from a polyethylene reservoir for water storage, with a volume of 200 liters. Will present data on the thermal efficiency, heat loss, water temperature of thermal reservoir at the end of the process simulation and baths. Will be demonstrated the feasibility of thermal, economic and material pickup proposed for the intended purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analysis of technical and financial feasibility of the use of a solar system for water heating in a fictitious hotel located in the Northeast region. Thereunto it is used techniques of solar collectors´ sizing and methods of financial mathematics, such as Net Present Value (NPV), Internal Rate of Return (IRR) and Payback. It will also be presented a sensitivity analysis to verify which are the factors that impact the viability of the solar heating. Comparative analysis will be used concerning three cities of distinct regions of Brazil: Curitiba, Belém and João Pessoa. The viability of using a solar heating system will be demonstrated to the whole Brazil, especially to the northeast region as it is the most viable for such an application of solar power because of its high levels of solar radiation. Among the cities examined for a future installation of solar heating systems for water heating in the hotel chain, João Pessoa was the one that has proved more viable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the increasing need to promote the use of resources that support the environment and the clean industry, the science has developed in the area of natural resource use as well as enhanced use of the renewable energy sources. Considering also the great need for clean water and wide availability of salt or brackish water, added to the great solar energy potential in northeastern of the Brazil, it was developed a solar distiller whose main difference is its system of pre-solar heating also. From experimental adjustments, the system was developed by the use of a cylindrical solar concentrator coupled to a conventional distiller. The system is designed such that attempt to facilitate the process termination trap to ensure constant movement of the fluid mass and thus enable higher temperatures to the system and thus fetch a higher amount of distillate collected. In a stage of the experiment were used a forced circulation to try to further increase the amount of energy exchange system. To develop the study were set up four settings for comparison in which one was only distiller simple as basic parameter, the second proposed configuration were with the coupling of the concentration triggered manually every 30 minutes to monitor the sun, the third configuration occurred with automatic triggering of a timer, and the fourth configuration was also used a pumping system that tried to improve the circulation of the fluid. With the comparative analysis of the results showed a gain in the amount of distillate system, especially in the forced model