3 resultados para Svanbergite, Woodhouseite, Phosphate, Sulphate, Raman spectroscopy, Infrared spectroscopy

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the influence of the poly (ethylene terephthalate) textile and films surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The plasma surface polymeric modification has been used for many researchs, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, the treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min, using oxygen plasma alternating the treatment time 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) which was varied only the gas composition from 0 to 100% leaving the treatment time remaining constant to all treatment (10 min). The plasma treatment was characterized in-situ with Optics Emission Spectroscopy (OES), and the samples was characterized by contact angle, surface tension, Through Capillary tests, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, scanning electronic Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results showed that oxygen treated fabrics presented high wettability, due to the hydrophilic groups incorporation onto the surface formed through spputering of carbon atoms. For the nitrogen atmosphere, there is the a film deposition of amine groups. Treatment with small oxygen concentration in the mixture with nitrogen has a higher spputered species of the samples

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polyester film has a vast application field, due some properties that are inherent of this kind of material such as, good mechanical resistance, chemical resistance to acids and bases and low production cost. However, this material has some limitations as low superficial tension, flat surface, low affinity to dyers, and poor adhesion which impede the use of the same ones for some finality as good wettability. Among the existent techniques to increase the superficial tension, plasma as energy source is the more promising technique, because of their versatility and for not polluting the environment. The plasma surface polymeric modification has been used for many researchers, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, polyester films were treated with oxygen plasma varying the treatment time from 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) varying the percentage of each gas the mixture from 0 to 100%, the treatment time remaining constant to all treatments (10 min). After plasma treatment the samples were characterized by contact angle, surface tension, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, with the aim to study the wettability increase of treated polyester films as its variables. In the (O2/N2) plasma treatment of polyester films can be observed an increase of superficial roughness superior to those treated by O2 plasma. By the other hand, the chemical modification through the implantation of polar groups at the surface is obtained more easily using O2 plasma treatment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured materials have been spreading successfully over past years due its size and unusual properties, resulting in an exponential growth of research activities devoted to nanoscience and nanotechnology, which has stimulated the search for different methods to control main properties of nanomaterials and make them suitable for applications with high added value. In the late 90 s an alternative and low cost method was proposed from alkaline hydrothermal synthesis of nanotubes. Based on this context, the objective of this work was to prepare different materials based on TiO2 anatase using hydrothermal synthesis method proposed by Kasuga and submit them to an acid wash treatment, in order to check the structural behavior of final samples. They were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), adsorption/desorption of N2, thermal analysis (TG/DTA) and various spectroscopic methods such as absorption spectroscopy in the infrared (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All the information of characterizations confirmed the complete conversion of anatase TiO2 in nanotubes titanates (TTNT). Observing the influence of acid washing treatment in titanates structure, it was concluded that the nanotubes are formed during heat treatment, the sample which was not subjected to this process also achieved a complete phase transformation, as showed in crystallography and morphology results, however the surface area of them practically doubled after the acid washing. By spectroscopy was performed a discussion about chemical composition of these titanates, obtaining relevant results. Finally, it was observed that the products obtained in this work are potential materials for various applications in adsorption, catalysis and photocatalysis, showing great promise in CO2 capture