6 resultados para NIÑO

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nickel alloys are widely used in the production of various materials, especially those that require mechanical strength characteristics associated with resistance to corrosion, for example, the stainless steel. Another use is the production of nickel alloy sintered from powder of metallic nickel. A promising alternative for the production of sintered components of nickel with an important reduction in costs of starting material is the use of mixtures of powders of Ni-NiO. This work aimed to study in situ reduction of NiO during sintering mixtures of Ni / NiO produced by powder metallurgy. The nickel mixtures have been processed by the technique of powder metallurgy and were pre-sintered in an oven under plasma reducing atmosphere of hydrogen. Mixtures Ni +15%NiO, Ni +25%NiO and Ni +35%NiO were studied and compared with samples consisting only of metallic Ni. Dilatometric tests were performed to study the sintering conditions of the mixtures. The consolidated material was analyzed for their microstructure and microhardness. Dilatometry graphs showed that the addition of nickel oxide in all compositions the active sintering the mixtures studied. In tests of microhardness indentations were made at different points of the sample surface. All compositions showed microhardness values close to the consolidated material from metallic nickel. However, sample containing Ni+35% NiO, showed a large dispersion of the values of microhardness tests performed at different points of the sample surface. Microstructural analysis of the material showed a higher concentration of voids and the presence of oxides in the waste composition of the mixtures Ni 35% NiO. The samples containing Ni+15%NiO showed microstructural characteristics and mechanical properties similar to metallic nickel consolidated under the same conditions of the compositions studied in this work and therefore had great potential for production of sintered nickel alloys

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite NiO-C0.9Gd0.1O1.95 (NiO-GDC), one of the materials most used for the manufacture of anodes of Cells Solid Oxide Fuel (SOFC) currently, were obtained by a chemical route which consists in mixing the precursor solution of NiO and CGO phases obtained previously by the Pechini method. The nanopowders as-obtained were characterized by thermal analysis techniques (thermogravimetry and Differential Scanning Calorimetry) and calcined materials were evaluated by X-ray diffraction (XRD). Samples sintered between 1400 and 1500 ° C for 4 h were characterized by Archimedes method. The effects of the composition on the microstructure and electrical properties (conductivity and activation energy) of the composites sintered at 1500 ° C were investigated by electron microscopy and impedance spectroscopy (between 300 and 650 ° C in air). The refinement of the XRD data indicated that the powders are ultrafine and the crystallite size of the CGO phase decreases with increasing content of NiO. Similarly, the crystallite of the NiO phase tends to decrease with increasing concentration of CGO, especially above 50 wt % CGO. Analysis by Archimedes shows a variation in relative density due to the NiO content. Densities above 95% were obtained in samples containing from 50 wt % NiO and sintered between 1450 and 1500 °C. The results of microscopy and impedance spectroscopy indicate that from 30-40 wt.% NiO there is an increase in the number of contacts NiO - NiO, activating the electronic conduction mechanism which governs the process of conducting at low temperatures (300 - 500 °C). On the other hand, with increasing the measuring temperature the mobility of oxygen vacancies becomes larger than that of the electronic holes of NiO, as a result, the high temperature conductivity (500-650 ° C) in composites containing up to 30-40 wt.% of NiO is lower than that of CGO. Variations in activation energy confirm change of conduction mechanism with the increase of the NiO content. The composite containing 50 wt. % of each phase shows conductivity of 19 mS/cm at 650 °C (slightly higher than 13 mS/cm found for CGO) and activation energy of 0.49 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases