4 resultados para Complete genome sequencing

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leishmania infantum is the main etiologic agent of visceral leishmaniasis in the New World. The pattern of distribution of leishmaniasis has changed substantially and has presented an emerging profile within the periphery of the Large Urban Centers. Leishmania infection can compromise skin, mucosa and viscera. Only 10% of the individuals infected develop the disease and 90% of human infection is asymptomatic. The main factors involved in the development of the disease are the host immune response, the vector’s species and the parasite’s genetic content. The sequencing of Leishmania isolated seeks to increase the understanding of the symptoms of individuals. The aim of this study was to evaluate the genetic diversity of circulating Leishmania strains among humans, and symptomatic and asymptomatic, and dogs from endemic areas of Rio Grande do Norte State and analyze sandflies from endemic areas for cutaneous and visceral disease. The genetic variability was evaluated by the use of markers hsp70 , ITS1 and a whole genome sequencing was also carried out. The amplified hsp70 and ITS1 of samples were analyzed and assembled using a Phred / Phrap package. The dendograms were constructed using the same methodology, but adding 500 bootstraps, followed by inferences on the relationships between Leishmania variants. The sequences of the 20 Brazilian isolates were mapped to the reference genome L. infantum JPCM5, using the Bowtie2 program and the identification of 36 contigs. The information of the valid SNPs were used in the PCA. SNPs were visualized by Geneious 7.1 and IGV. The genome annotations were transferred to their respective chromosomes and displayed on Geneious. The matching sequences of all chromosomes were aligned using Mauve. The phylogenetic trees were calculated according to maximum likelihood and JTT models. Sandflies were analyzed by PCR for the identification of Leishmania infection, a blood meal source and GAPDH sand fly. As a result, hsp70 and ITS1 were not capable of identifying genetic variability among human isolates from symptomatic and asymptomatic, and dogs. The complete sequencing of the 20 Brazilian isolates revealed a strong similarity between the circulating Leishmania strains in Rio Grande do Norte. The isolates collected in the city of Natal from humans and canines remained grouped in all analyzes, suggesting that there is genotypic and geographic proximity among the isolates. The isolated samples in the 1990s had a higher genotypic diversity when compared to freshly isolated samples. All isolates presented 36 chromosomes with variable ploidy among them, no correlation was found between the number of amastina genes copies, gp63, A2 and SSG with such clinic forms. In general, we did not find correlation between symptomatic and asymptomatic clinical forms and the gene content of the Brazilian isolates of Leishmania. 34,28% of the sandflies collected in the upper west region were L. longipalpis and the main sources of blood meal were humans, dogs and chickens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leishmania infantum is the main etiologic agent of visceral leishmaniasis in the New World. The pattern of distribution of leishmaniasis has changed substantially and has presented an emerging profile within the periphery of the Large Urban Centers. Leishmania infection can compromise skin, mucosa and viscera. Only 10% of the individuals infected develop the disease and 90% of human infection is asymptomatic. The main factors involved in the development of the disease are the host immune response, the vector’s species and the parasite’s genetic content. The sequencing of Leishmania isolated seeks to increase the understanding of the symptoms of individuals. The aim of this study was to evaluate the genetic diversity of circulating Leishmania strains among humans, and symptomatic and asymptomatic, and dogs from endemic areas of Rio Grande do Norte State and analyze sandflies from endemic areas for cutaneous and visceral disease. The genetic variability was evaluated by the use of markers hsp70 , ITS1 and a whole genome sequencing was also carried out. The amplified hsp70 and ITS1 of samples were analyzed and assembled using a Phred / Phrap package. The dendograms were constructed using the same methodology, but adding 500 bootstraps, followed by inferences on the relationships between Leishmania variants. The sequences of the 20 Brazilian isolates were mapped to the reference genome L. infantum JPCM5, using the Bowtie2 program and the identification of 36 contigs. The information of the valid SNPs were used in the PCA. SNPs were visualized by Geneious 7.1 and IGV. The genome annotations were transferred to their respective chromosomes and displayed on Geneious. The matching sequences of all chromosomes were aligned using Mauve. The phylogenetic trees were calculated according to maximum likelihood and JTT models. Sandflies were analyzed by PCR for the identification of Leishmania infection, a blood meal source and GAPDH sand fly. As a result, hsp70 and ITS1 were not capable of identifying genetic variability among human isolates from symptomatic and asymptomatic, and dogs. The complete sequencing of the 20 Brazilian isolates revealed a strong similarity between the circulating Leishmania strains in Rio Grande do Norte. The isolates collected in the city of Natal from humans and canines remained grouped in all analyzes, suggesting that there is genotypic and geographic proximity among the isolates. The isolated samples in the 1990s had a higher genotypic diversity when compared to freshly isolated samples. All isolates presented 36 chromosomes with variable ploidy among them, no correlation was found between the number of amastina genes copies, gp63, A2 and SSG with such clinic forms. In general, we did not find correlation between symptomatic and asymptomatic clinical forms and the gene content of the Brazilian isolates of Leishmania. 34,28% of the sandflies collected in the upper west region were L. longipalpis and the main sources of blood meal were humans, dogs and chickens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shrimp farming is one of the activities that contribute most to the growth of global aquaculture. However, this business has undergone significant economic losses due to the onset of viral diseases such as Infectious Myonecrosis (IMN). The IMN is already widespread throughout Northeastern Brazil and affects other countries such as Indonesia, Thailand and China. The main symptom of disease is myonecrosis, which consists of necrosis of striated muscles of the abdomen and cephalothorax of shrimp. The IMN is caused by infectious myonecrosis virus (IMNV), a non-enveloped virus which has protrusions along its capsid. The viral genome consists of a single molecule of double-stranded RNA and has two Open Reading Frames (ORFs). The ORF1 encodes the major capsid protein (MCP) and a potential RNA binding protein (RBP). ORF2 encodes a probable RNA-dependent RNA polymerase (RdRp) and classifies IMNV in Totiviridae family. Thus, the objective of this research was study the IMNV complete genome and encoded proteins in order to develop a system differentiate virus isolates based on polymorphisms presence. The phylogenetic relationship among some totivirus was investigated and showed a new group to IMNV within Totiviridae family. Two new genomes were sequenced, analyzed and compared to two other genomes already deposited in GenBank. The new genomes were more similar to each other than those already described. Conserved and variable regions of the genome were identified through similarity graphs and alignments using the four IMNV sequences. This analyze allowed mapping of polymorphic sites and revealed that the most variable region of the genome is in the first half of ORF1, which coincides with the regions that possibly encode the viral protrusion, while the most stable regions of the genome were found in conserved domains of proteins that interact with RNA. Moreover, secondary structures were predicted for all proteins using various softwares and protein structural models were calculated using threading and ab initio modeling approaches. From these analyses was possible to observe that the IMNV proteins have motifs and shapes similar to proteins of other totiviruses and new possible protein functions have been proposed. The genome and proteins study was essential for development of a PCR-based detection system able to discriminate the four IMNV isolates based on the presence of polymorphic sites

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shrimp farming is one of the activities that contribute most to the growth of global aquaculture. However, this business has undergone significant economic losses due to the onset of viral diseases such as Infectious Myonecrosis (IMN). The IMN is already widespread throughout Northeastern Brazil and affects other countries such as Indonesia, Thailand and China. The main symptom of disease is myonecrosis, which consists of necrosis of striated muscles of the abdomen and cephalothorax of shrimp. The IMN is caused by infectious myonecrosis virus (IMNV), a non-enveloped virus which has protrusions along its capsid. The viral genome consists of a single molecule of double-stranded RNA and has two Open Reading Frames (ORFs). The ORF1 encodes the major capsid protein (MCP) and a potential RNA binding protein (RBP). ORF2 encodes a probable RNA-dependent RNA polymerase (RdRp) and classifies IMNV in Totiviridae family. Thus, the objective of this research was study the IMNV complete genome and encoded proteins in order to develop a system differentiate virus isolates based on polymorphisms presence. The phylogenetic relationship among some totivirus was investigated and showed a new group to IMNV within Totiviridae family. Two new genomes were sequenced, analyzed and compared to two other genomes already deposited in GenBank. The new genomes were more similar to each other than those already described. Conserved and variable regions of the genome were identified through similarity graphs and alignments using the four IMNV sequences. This analyze allowed mapping of polymorphic sites and revealed that the most variable region of the genome is in the first half of ORF1, which coincides with the regions that possibly encode the viral protrusion, while the most stable regions of the genome were found in conserved domains of proteins that interact with RNA. Moreover, secondary structures were predicted for all proteins using various softwares and protein structural models were calculated using threading and ab initio modeling approaches. From these analyses was possible to observe that the IMNV proteins have motifs and shapes similar to proteins of other totiviruses and new possible protein functions have been proposed. The genome and proteins study was essential for development of a PCR-based detection system able to discriminate the four IMNV isolates based on the presence of polymorphic sites