71 resultados para Cimentos de resina

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Compound Portland cements are commonly used in construction, among them stand out the CPII-Z, CPII-F and CPIV. These types of cement have limited application on oil well cementing, having its compositional characteristics focused specifically to construction, as cement for use in oil wells has greater complexity and properties covering the specific needs for each well to be coated. For operations of oil wells cementing are used Portland cements designed specifically for this purpose. The American Petroleum Institute (API) classifies cements into classes designated by letters A to J. In the petroleum industry, often it is used Class G cement, which is cement that meets all requirements needed for cement from classes A to E. According to the scenario described above, this paper aims to present a credible alternative to apply the compound cements in the oil industry due to the large availability of this cement in relation to oil well cements. The cements were micro structurally characterized by XRF, XRD and SEM tests, both in its anhydrous and hydrated state. Later technological tests were conducted to determine the limits set by the NBR 9831. Among the compound cements studied, the CPII-Z showed satisfactory properties for use in primary and secondary operations of oil wells up to 1200 meters cementing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this clinical study was to evaluate the use of the toothpaste with fluoride and without fluoride and the daily tooth brushing are effective in the reversion of the dental enamel conditioned by acid. Another objective of this clinical study was to evaluate if the positioning of orthodontic accessories with glass ionomer cement helps in the reversion of the dental enamel conditioned by acid, when compared to composed resin. One hundred and twenty teeth were selected with indication of extraction by orthodontic reasons. The 30 volunteers were divided, randomly, in two groups. A group used toothpaste without fluoride and the other with it. The teeth of the sample were shuffled, in each volunteer. The teeth were conditioned by the 37% orthophosphoric acid. One of the conditioned teeth stayed in the mouth and suffered action of the abrasion for the tooth brushing, in another teeth a stainless steel mesh protection was positioned with glass ionomer cement, in another tooth the screen was glued with composed resin, in a fourth tooth (the control) was only conditioned after the extractions, 60 days later. All the teeth were appraised through DIAGNOdent, MEVA and EDS. In the obtained data it was possible to observe that there were not statistic significant differences in any comparison, even in the group that did not have access to the fluoride in the toothpaste as in the other that had. According with the used methodology, it was possible to observe too that there was not statistic significant differences in any comparison, even in the group that had the stainless steel mesh positioned with glass ionomer cement as in the group that the stainless steel mesh was positioned with composed resin. However, it was observed that there was an improvement in the topography of the enamel in all the teeth. The accomplishment of this study was facilitated due to the participation of the researchers' of the health area (dentistry), materials engineer, physics and chemistry. The researchers were originating from the Federal University of Rio Grande do Norte and of the University of Queensland, in Australia. This interdisciplinary group was decisive in the accomplishment of the study. It can be concluded that the enamel tends to return to its initial aspect, even if the patient does not have access to fluoride. That is probably due the action of the abrasion for the tooth brushing and mastication. In spite of it not being significant, it is suggested that the conditioned enamel was more resistant to the abrasion in the group that had access to fluoride. It was also possible to conclude that the fluoride liberated by the glass ionomer was not enough to provide a significant difference in the enamel conditioned by the acid, when compared with the composed resin, even in the group that did not use fluoride in the toothpaste as in the group that used

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geopolymers are cementing materials that depict a number of advantages compared to Portland cement. Contrary to the latter, geopolymers are synthesized at room temperature, thus significantly reducing the emission of CO2 to the atmosphere. Moreover, the composition and synthesis reactions can be tailored to adjust the setting time of the material as well as its compressive mechanical strength. It is then possible to produce geopolymeric cements with short setting times and high compressive strength, although relatively brittle. The objective of the present study was to produce and characterize composite materials by reinforcing fastsetting geopolymeric matrixes with polypropylene geosynthetics (geomats and geotextiles) in an attempt to improve the toughness and tensile strength of the cementing material. Geosynthetics have been increasingly used to reinforce engineering structures, providing higher strength and better toughness. In particular, polypropylene nonwoven and geomats depict other attractive properties such as low density, durability, impact absorption and resistance to abrasion. Fast-setting geopolymers were then synthesized and reinforced with polypropylene nonwoven and geomats. The mechanical strength of the materials, reinforced or not, was characterized. The results showed that relatively short setting times and adequate flowing behavior were achieved by adjusting the composition of the geopolymer. In addition, it is possible to improve the fracture resistance of geopolymeric cements by adding polypropylene geosynthetics. The best results were achieved by reinforcing geopolymer with polypropylene TNT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of polymer based coatings is a promising approach to reduce the corrosion problem in carbon steel pipes used for the transport of oil and gas in the oil industry. However, conventional polymer coatings offer limited properties, which often cannot meet design requirements for this type of application, particularly in regard to use temperature and wear resistance. Polymer nanocomposites are known to exhibit superior properties and, therefore, offer great potential for this type of application. Nevertheless, the degree of enhancement of a particular property is greatly dependent upon the matrix/nanoparticle material system used, the matrix/nanoparticle interfacial bonding and also the state of dispersion of the nanoparticle in the polymer matrix. The objective of the present research is to develop and characterize polymer based nanocomposites to be used as coatings in metallic pipelines for the transportation of oil and natural gas. Epoxy/SiO2 nanocomposites with nanoparticle contents of 2, 4, and 8 wt % were processed using a high-energy mill. Modifications of the SiO2 nanoparticles‟ surfaces with two different silane agents were carried out and their effect on the material properties were investigated. The state of dispersion of the materials processed was studied using Scanning and Transmission Electron Microscopy (SEM and TEM) micrographs. Thermogravimetric analysis (TG) were also conducted to determine the thermal stability of the nanocomposites. In addition, the processed nanocomposites were characterized by dynamic mechanical analysis (DMA) to investigate the effect of nanoparticles content and silane treatment on the viscoelastic properties and on the glass transition temperature. Finally, wear tests of the pin-on-disc type were carried out to determine the effects of the nanoparticles and the silane treatments studied. According to the results, the addition of SiO2 nanoparticles treated with silane increased the thermal stability, the storage modulus and Tg of the epoxy resin and decreased wear rate. This confirms that the interaction between the nanoparticles and the polymer chains plays a critical role on the properties of the nanocomposites

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to present the feasibility of using a composite using discarded material from the cultivation of banana tree (pseudostem), which is fibrillated together with synthetic resin replacing glass fiber to be used in structural elements that do not demand large mechanical stress such as reservoirs, troughs, domes, sewage pipes etc.. For this, there were studies about the mechanical properties of a composite made with polyester resin and fiber of banana tree (Musa sp, musac), in which the splints were removed from the pseudostem, being made fibrillation by hand, with the aid of a brush steel, followed by natural drying. After treatment for cleaning and removal of wax, the fiber was cut into pieces of approximately 60 mm to 100 mm, for, together with synthetic resin, make cards of a features fiber composite with random orientation relative to the weight of the resin. We used three different percentages of fiber (3%, 6% and 9%), in order to make a comparative study between them and what would be the one with the best performance. Were manufactured specimens of each material and then subjected to uniaxial tensile tests, three point bending, moisture absorption and thermal characteristics. The results show that, in general, the use of banana tree fiber is feasible simply by an improvement in the production process (machining of the procedure) and greater care in the manufacture of parts

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composites manufactured with long fibres aligned in a single direction, and overlay has been shown to have better performance than the short fibers randomly distributed. In particular, the lignocellulosic fibers extracted from the sisal leaves, used in conjunction with the epoxy resin has attracted the attention of many researchers because the final properties of the system formed. In this work composites based on epoxy resin reinforced with sisal fibers were manufactured. The sisal fibres were treated with an alkaline solution of 0.06 mol/l NaOH. The treated, and untreated fibres were subjected to tension x extension tests. The composites were manufactured in the "Lossy" mold with the specifications of the samples to be produced (300x20x4 mm). The tension tests were carried out in accordance with the ASTM standards 3039 (for the composite aligned in a single direction) and ASTM D5573 (for composites in overlay), three point bending tests were performed according to ASTM D790. Analyzing the results of the tests of tension and three point bending tests, it was observed that the composites with the configuration of overlapping had the better elastic module in both tests. As to the maximum resistance to tension, the best result was the composites aligned in a single direction. Tests of absorption of water and micrographs are in progress

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presents a composite formed by orthophthalic resin and fiber loading of carnauba straw. The fibers were first dried in direct sun exposure and subsequently ground into fodder for the reduction in size. Various formulations of the composite were preliminarily tested by choosing the one presenting the best processability in applying the mold. The composite produced is used for the manufacture of a parabolic surface subsequently coated with mirror segments, flexible plastic, for reflecting the solar rays incident on it. The reflective parable represents the main element of the solar cooker that works with the concentration of sunlight and has dimensions of 1.14 m in diameter and area of 1.0 m². Manufacturing processes and assembly of solar cooker concentration produced are presented. The results of tests for cooking and baking various foods, including rice, pasta, beans, cake, cassava, shrimp, beef, breaded demonstrating the competitiveness of solar cooker studied with other stoves already manufactured and tested in Brazil are presented and in the world. It was also demonstrated the feasibility of the proposed composite for Prototypes manufacture of solar and other structures that do not require great efforts resistance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effectiveness during a twelve-month period, of resin-modified glass ionomer (Vitremer@) used as fissure sealants compared to supervised teeth brushing in the prevention of oclusal caries in permarient molars of pubIlc school children from 5 to 7 years of age. A total of 91 children participated in the study, being randomly divided up into three groups of investigation: group with sealant (n=31), group of supervised brushing (m=30), and control gorup (n=30). After 12 months, a total of 28.5% of tosses in the sample of 26 children was registered, and although there wasn t a significant diference between these losses and the groups studles (p = 0.6355), there was a considerable reduction in the sample. The results showed that none of the independentIy studied variables (present caries experience, biofilm, bleeding, sealant retention, position of the tooth in the arch, and sex) interfered in the final results, and that there was no significant difference between applying the sealant in question, perfornling supervised dental brushing, or not intervening at alI (p=0.542). These results could have been a consequence of the limitations found alI through the study, especially relating to the losses occurred because of school evasion, transfer, or because of the accident in the Marise Paiva Municipal School, Keeping students away for approximately one semester, so tht a new reseach had to be developed sos as to better clarify the effects among the treatments done there

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate through radiographic and microscopic analysis the efficiency of the filling techniques by vertical hidraulic compression after the root canal mechanical instrumentation in vitro as well to evaluate the marginal apical leakage through macroscopic and microscopic analysis. Thirty human mandibular molars were used , they were divided on three groups, these were subdivided on six subgroups with five specimens each, come down to 106 root canals filled. Initially, the teeth were instrumented with Profile system series 29 and filled with two ways: single accessory cone or single cone associated with gutta-percha secundary cone, with Fill Canal sealer or Sealer 26. Completed the filling, the teeth were coated with araldit and finger -nail polish except for the apical 2 mm and dried for 3 hours, thep radiographs were taken of the teeth in orto and disto-radiai directions. Next, the coronal seal was carried out with composite resin photopolymerized and with their process of making impermeable. Teeth of positive controls were used without araldit and finger-nail polish whereas the negative controls were used with total coat of araldit and finger-nail polish. The specimens were placed in 2% Methylene Blue dye for 24 hours and thermocycled for 7 days. Afterwards, sections were made of each tooth at mesial and distal roat, after this the teeth were radiographed at buccolíngual direction for a macroscopic analysis and at buccolingual and mesiodistal directions for assessment of the marginal apical leakage. Cross sections were made 3 mm to 3mm since the tooth apice. The sections obtained for each group were observed with a stereomicroscope to evaluate the quality of the root canal filling and the marginal apical leakage. The results showed that: In the four techniques the marginal dye leakage was present in the apical third; in all groups the quality of the root canal filling in the radiography was better at mesial root canal and the single cone technique showed inefficient when only a single distal root canal was present. In the radiographic evaluation the best quality of the root canal filling was observed in the 1A group (single accessory cone + FiIl Canal), as in the mesial root as in the distal root wich Shcwed twe root canals: when the distaI root had only one canal. the best result was showed by 28 group (single accessory cone associated with secundary cone + Fill Canal) In the macroscopic analysis of longitudinal !eaKage (outside surface). less leakage was showed as In the mesial root as in the distal root in the negative control group (3) followed 2A group (single accessory cone + Sealer 26). When the microscopic analysis of tranversal leakage of both roots (inside surface) was carried out. the groups that showed less dye leakage were the negative control (38) followed the 28 group (single acessory cone associated with secundary cone + Sealer 26). The homogeneity o filling was best noted in the 1 A group (.single accessoty cone + Fill Canal). The groups that showed less dye penetration in the tranversal leakage (total area) were negative control (3B) and 2B

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reservoirs that present highly viscous oils require methods to aid in their recovery to the surface. The elev ated oil viscosity hinders its flow through porous media and conventional recovery methods have not obtained significant efficiency. As such, the injection of steam into the reservoir through an injection well has been the most widely used method of therma l recovery, for it allows elevated volumes of recovery due to the viscosity reduction of the oil, facilitating the oil’s mobility within the rock formation and consequently into the production well where it will be exploited. On the other hand, the injecti on of vapor not only affects the fluids found in the rock pores, but the entire structure that composes the well where it is injected due to the high temperatures used in the process. This temperature increment is conducted to the cement, found in the annu lus, responsible for the isolation of the well and the well casing. Temperatures above 110 ̊C create new fazes rich in calcium in the cement matrix, resulting in the reduction of its permeability and the consequential phenomenon of mechanical resistance ret rogression. These alterations generate faults in the cement, reducing the well’s hydraulic isolation, creating insecurity in the operations in which the well will be submitted as well as the reduction of its economic life span. As a way of reducing this re trograde effect, this study has the objective of evaluating the incorporation of rice husk ash as a mineral additive substitute of silica flour , commercially utilized as a source of silica to reduce the CaO/SiO 2 ratio in the cement pastes submitted to high temperatures in thermal recovery. Cement pastes were formulated containing 20 and 30% levels of ash, apart from the basic paste (water + cement) and a reference paste (water + cement + 40% silica flour) for comparison purposes. The tests were executed th rough compression resistance tests, X - Ray diffraction (XRD) techniques, thermogravimetry (TG), scanning electron microscopy (SEM) and chemical anal ysis BY X - ray fluorescence (EDS) on the pastes submitted to cure at low temperatures (45 ̊C) for 28 days following a cure at 280 ̊C and a pressure of 2,000 PSI for 3 days, simulating vapor injection. The results obtained show that the paste containing 30% r ice shell ash is satisfactory, obtaining mechanical resistance desired and equivalent to that of the paste containing 40% silica flour, since the products obtained were hydrated with low CaO/SiO 2 ratio, like the Tobermorita and Xonotlita fases, proving its applicability in well subject to vapor injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constant search for sustainable alternatives has earned great effort of researchers in research and obtaining new materials, encouraging the rise of eco-friendly productive development and providing simple and practical solutions to economic profitability. In this sense, the use of materials derived from natural renewable sources, vegetables, has great potential applicability to sustainable development. As alternative materials plant fibers can be applied to production of a range of composite materials easing the use of materials derived from non-renewable this thesis were sisal mats used for achieving a composite matrix having as one orthophthalic polyester resin. The webs were subjected to surface treatment in boiling water for 15 minutes. The webs of sisal fibers used were, respectively, 5%, 10% and 15% of the composite weight. The composite was obtained and characterized mechanically and thermally to the chosen formulations. several plates of the composite to obtain the body of evidence for the characterization tests complying with the relevant rules were made. The obtained composites showed strength tensile and bending lower than the array, so it can be used where are required low load requests. The most significant result of the composite studied given to the impact energy absorption, far superior to the matrix used. Other properties were highlighted in oil absorption, and density. It proved the feasibility of obtaining the composite for the three formulations studied C5, C10 and C15 being the most feasible to C10. To demonstrate the feasibility of using composite were made a wall clock, a bench, a chair and a shelf, low mechanical stress structures. It was concluded that the sisal rugs exercised the load function in the composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constant search for sustainable alternatives has earned great effort of researchers in research and obtaining new materials, encouraging the rise of eco-friendly productive development and providing simple and practical solutions to economic profitability. In this sense, the use of materials derived from natural renewable sources, vegetables, has great potential applicability to sustainable development. As alternative materials plant fibers can be applied to production of a range of composite materials easing the use of materials derived from non-renewable this thesis were sisal mats used for achieving a composite matrix having as one orthophthalic polyester resin. The webs were subjected to surface treatment in boiling water for 15 minutes. The webs of sisal fibers used were, respectively, 5%, 10% and 15% of the composite weight. The composite was obtained and characterized mechanically and thermally to the chosen formulations. several plates of the composite to obtain the body of evidence for the characterization tests complying with the relevant rules were made. The obtained composites showed strength tensile and bending lower than the array, so it can be used where are required low load requests. The most significant result of the composite studied given to the impact energy absorption, far superior to the matrix used. Other properties were highlighted in oil absorption, and density. It proved the feasibility of obtaining the composite for the three formulations studied C5, C10 and C15 being the most feasible to C10. To demonstrate the feasibility of using composite were made a wall clock, a bench, a chair and a shelf, low mechanical stress structures. It was concluded that the sisal rugs exercised the load function in the composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels