24 resultados para Carna granite

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the State Rio Grande do Norte, Brazil, the most significant deposits of minerals in the production of granite and pegmatite are Seridó region. Municipalities of Parelhas and Equador are the main responsible for the production of feldspar, quartz, kaolin and granite. The ceramic industries are always in search of competitiveness by investing in new products or improving existing techniques. The stoneware is a type of pottery that stands in the market because it presents technical and aesthetic characteristics superior to other existing products. Characteristics of the raw materials initially obtained with chemical analysis and mineralogical analysis are crucial in getting a product that satisfies the conditions in a manufacturing process and is, in principle, directly related to the firing cycle. This research aimed at developing new formulations for the mass production of ceramic stoneware. The raw materials initially characterized were feldspar, quartz, kaolin and granite. As part of the research was developed at the University of Aveiro, in Portugal, we used two clays used in the production of Portuguese ceramics. The raw material Brazilian and Portuguese and the final product, both in Portugal and Brazil, were analyzed for X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis, thermal analysis and analysis of scanning electron microscopy (MEV). The specimens prepared at the University of Aveiro (DECV) were sintered at 10000C and 12000C and the specimens prepared in UFRN were sintered at 10000C, 10500C, 11000C, 11500C, 12000C, 12500C and 13000C, but the best results and demonstrating the presence of the mineral mullite were at temperatures of 12000C, 12500C and 13000C. The results showed that the granite waste used may be considered raw material of excellent quality for use in the ceramic industry and coating floors and more accurately by the industry of stoneware. Physical and mechanical tests conducted on samples of the formulations F01 and F02 developed in UFRN showed a water absorption and mechanical strength suitable for the stoneware

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The industrial production of ornamental rocks and the burning of coffee husk generate waste that is discarded into the environment. However, with the study of the incorporation of these residues in ceramic products, may be found an alternative to reducing environmental impacts and detrimental effects on human health caused by its indiscriminate disposal of waste in nature. Thus, this work aimed to study the addition of ashes of the coffee husk and granite residue in matrix of red ceramic. The raw materials were dry milled and sieved to mesh 100. To characterize the raw materials were carried out analyzes of X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis (PSA), differential thermal analysis (DTA) and thermogravimetric analysis (TG). Six formulations were prepared where the clay content was kept constant (70%wt) and ashes contents and granite residue varied from 10, 15, 20 and 30%. Dilatometrics analyzes were performed at four selected formulations, containing them: 100% clay (A100); 70% clay and 30% ashes (A70C30); 70% clay and 30% granite residue (A70G30); and 70% clay, 15% granite residue and 15% ashes (A70G15C15). The samples were prepared by uniaxial compaction with pressure of 25 MPa, and fired at temperatures of 800°C, 850ºC, 900ºC, 950ºC, 1000ºC and 1100°C. Assays were performed to determine the linear shrinkage of burning (LSB), water absorption (WA), apparent porosity (AP), density (D) and tensile bending. Also were performed analyzes of X-ray diffraction (XRD) and scanning electron microscopy (SEM) of the samples fired. The formulations incorporating granite residue and/or ashes reached the required limits of water absorption according to NBR 15270-1 and NBR 15310 and tensile bending according to classical literature (SANTOS, 1989) necessary for the production of tiles and ceramic block for masonry sealing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Researches have shown that the introduction of rubber in concrete improves the features of its deformability, as well as contributes to environmental disposal of waste generated in the tire retreading process. Furthermore, there is a high availability of limestone within RN and CE country. Ignorance about this stone, does not allow its wide use as aggregate, leaving, this abundant supply idle. A composite of limestone gravel, with proportions of tire rubber waste which could be used as concrete would be an alternative to concrete for low applications. Therefore, this research aims to evaluate the characteristics of concrete containing limestone gravel and proportions of little aggregate replacement (sand) by tire rubber waste. To this goal, the material components of the concrete were characterized, concrete specimens with limestone gravel were made, from the dash 1.0: 2.5: 3.5, varying the water/cement ratio, and inserting a commercial plasticizer, without a proportion of residue, known as reference. From this, concrete with and without the presence of the additive in the same proportions were chosen, as well as these with the use of granite gravel, for being the most used. Selected the references, to these, replacements of little aggregate (sand) were added replaced by rubber waste from the tire retreading process, treated with 1M NaOH in proportions from 5.0 to 20.0 % by mass, cured and exposed to the semiarid environment. The results indicate the possibility of using limestone gravel in the concrete composition with workability correction using plasticizer. There was a decrease in the mechanical properties of the concrete with increments of waste rubber, but there is an improvement in toughness and deformability of the composite, which makes it interesting for the construction of non-structural concrete floors, as well as, the rubber waste delayed the hardening process, continuing to gain resistance after 28 days

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marble and granite waste come from the process of mining of those ornamental rocks for use in the building industry. Brazil is one of the largest producers of blocks or finished products of ornamental rocks, extracting about 5.2 tons / year. The largest national producers are the states of Espírito Santo, Minas Gerais and Bahia which account for 80% of the Brazilian production. However, the waste total amount during processing of these blocks reaches 40% of the total. The use of the waste produced by this industry in white ceramics could be a form of disposition, because these materials, are thrownasa mud directly at decantation ponds, wastelands or in rivers, without any treatment. The present work has as main purpose to study the influence that reject of the ornamental rocks on the physical and mechanical properties of white ceramics. X-Ray characterizations of raw materials by were performed X-Ray fluorescence, X-Ray diffraction, granulometric, thermogravimetric and thermodiferencial analysis, five formulations were made (0, 10, 20, 30, 40% in granite weight) wich were burned at three temperatures: 1100°C, 1150°C and 1200ºC with 60 minutes of sorling time. After sintering, the samples were submitted to different analyser absorption of water, linear retraction, apparent porosity, apparent specific mass, flexival stronght, and scanning were obtained microscopy. Compatible technological properties within the limits demanded for the production of porcelainized stoneware

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis encompasses the integration of geological, geophysical, and seismological data in the east part of the Potiguar basin, northeastern Brazil. The northeastern region is located in South American passive margin, which exhibits important areas that present neotectonic activity. The definition of the chronology of events, geometry of structures generated by these events, and definition of which structures have been reactivated is a necessary task in the region. The aims of this thesis are the following: (1) to identify the geometry and kinematics of neotectonic faults in the east part of the Potiguar basin; (2) to date the tectonic events related to these structures and related them to paleoseismicity in the region; (3) to present evolutional models that could explain evolution of Neogene structures; (4) and to investigate the origin of the reactivation process, mainly the type of related structure associated with faulting. The main type of data used comprised structural field data, well and resistivity data, remote sensing imagery, chronology of sediments, morphotectonic analysis, x-ray analysis, seismological and aeromagnetic data. Paleostress analysis indicates that at least two tectonic stress fields occurred in the study area: NSoriented compression and EW-oriented extension from the late Campanian to the early Miocene and EW-oriented compression and NS-oriented extension from the early Miocene to the Holocene. These stress fields reactivated NE-SW- and NW-SE-trending faults. Both set of faults exhibit right-lateral strike-slip kinematics, associated with a minor normal component. It was possible to determine the en echelon geometry of the Samambaia fault, which is ~63 km long, 13 km deep, presents NE-SW trend and strong dip to NW. Sedimentfilled faults in granite rocks yielded Optically Stimulated Luminescence (OSL) and Single-Aliquot Regeneration (SAR) ages at 8.000 - 9.000, 11.000 - 15.000, 16.000 - 24.000, 37.000 - 45.500, 53.609 - 67.959 e 83.000 - 84.000 yr BP. The analysis of the ductile fabric in the João Câmara area indicate that the regional foliation is NE-SW-oriented (032o - 042o), which coincides with the orientation of the epicenters and Si-rich veins. The collective evidence points to reactivation of preexisting structures. Paleoseismological data suggest paleoseismic activity much higher than the one indicated by the short historical and instrumental record

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The area studied forms a thin NNE-directed belt situated south of Recife town (Pernambuco state), northeastern Brazil. Geologically, it comprises the Pernambuco Basin (PB), which is limited by the Pernambuco Lineament to the north, the Maragogi high to the south and the Pernambuco Alagoas massif to the west, all of them with Precambrian age. This thesis reports the results obtained for the Cabo Magmatic Province (CMP), aiming the characterization of the geology, stratigraphy, geochronology, geochemistry and petrogenesis of the Cretaceous igneous rocks presented in the PB. The PB is composed of the Cabo Formation (rift phase) at the base (polymictic conglomerates, sandstones, shales), an intermediate unit, the Estiva Formation (marbles and argillites), and, at the top, the Algodoais Formation (monomictic conglomerates, sandstones, shales). The CMP is represented by trachytes, rhyolites, pyroclastics (ignimbrites), basalts / trachy-andesites, monzonites and alkali-feldspar granite, which occur as dykes, flows, sills, laccoliths and plugs. Field observations and well descriptions show that the majority of the magmatic rocks have intrusive contacts with the Cabo Formation, although some occurrences are also suggestive of synchronism between volcanism and siliciclastic sedimentation. 40Ar/39Ar and zircon fission tracks for the magmatic rocks indicate an average age of 102 r 1 Ma for the CMP. This age represents an expressive event in the province and is detected in all igneous dated materials. It is considered as a minimum age (Albian) for the magmatic episode and the peak of the rift phase in the PB. The 40Ar/39Ar dates are about 10-14 Ma younger than published palynologic ages for this basin. Geochemically, the CMP may be divided in two major groups; i) a transitional to alkaline suite, constituted by basalts to trachy-andesites (types with fine-grained textures and phenocrysts of sanidine and plagioclase), trachytes (porphyrytic texture, with phenocrysts of sanidine and plagioclase) and monzonites; ii) a alkaline suite, highly fractionated, acidic volcano-plutonic association, formed by four subtypes (pyroclastic flows ignimbrites, fine-to medium-grained rhyolites, a high level granite, and later rhyolites). These four types are distinguished essentially by field aspects and petrographic and textural features. Compatible versus incompatible trace element concentrations and geochemical modeling based on both major and trace elements suggest the evolution through low pressure fractional crystallization for trachytes and other acidic rocks, whereas basalts / trachy-andesites and monzonites evolved by partial melting from a mantle source. Sr and Nd isotopes reveal two distinct sources for the rocks of the CMP. Concerning the acidic ones, the high initial Sr ratios (ISr = 0.7064-1.2295) and the negative HNd (-0.43 to -3.67) indicate a crustal source with mesoproterozoic model ages (TDM from 0.92 to 1.04 Ga). On the other hand, the basic to intermediate rocks have low ISr (0.7031-0.7042) and positive HNd (+1.28 to +1.98), which requires the depleted mantle as the most probable source; their model ages are in the range 0.61-0.66 Ga. However, the light rare earth enrichment of these rocks and partial melting modeling point to an incompatible-enriched lherzolitic mantle with very low quantity of garnet (1-3%). This apparent difference between geochemical and Nd isotopes may be resolved by assuming that the metasomatizing agent did not obliterate the original isotopic characteristics of the magmas. A 2 to 5% partial melting of this mantle at approximately 14 kbar and 1269oC account very well the basalts and trachy-andesites studied. By using these pressure and temperatures estimates for the generation of the basaltic to trachy-andesitic magma, it is determined a lithospheric stretching (E) of 2.5. This E value is an appropriated estimate for the sub-crustal stretching (astenospheric or the base of the lithosphere?) region under the Pernambuco Basin, the crustal stretching probably being lower. The integration of all data obtained in this thesis permits to interpret the magmatic evolution of the PB as follows; 1st) the partial melting of a garnet-bearing lherzolite generates incompatible-enriched basaltic, trachy-andesitic and monzonitic magmas; 2nd) the underplating of these basaltic magmas at the base of the continental crust triggers the partial melting of this crust, and thus originating the acidic magmas; 3rd) concomitantly with the previous stage, trachytic magmas were produced by fractionation from a monzonitic to trachy-andesitic liquid; 4th) the emplacement of the several magmas in superficial (e.g. flows) or sub-superficial (e.g. dykes, sills, domes, laccoliths) depths was almost synchronically, at about 102 r 1 Ma, and usually crosscutting the sedimentary rocks of the Cabo Formation. The presence of garnet in the lherzolitic mantle does not agree with pressures of about 14 kbar for the generation of the basaltic magma, as calculated based on chemical parameters. This can be resolved by admitting the astenospheric uplifting under the rift, which would place deep and hot material (mantle plume?) at sub-crustal depths. The generation of the magmas and their subsequent emplacement would be coupled with the crustal rifting of the PB, the border (NNE-SSW directed) and transfer (NW-SE directed) faults serving as conduits for the magma emplacement. Based on the E parameter and the integration of 40Ar/39Ar and palynologic data it is interpreted a maximum duration of 10-14 Ma for the rift phase (Cabo Formation clastic sedimentation and basic to acidic magmatism) of the PB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation focuses on rock thermal conductivity and its correlations with petrographic, textural, and geochemical aspects, especially in granite rocks. It aims at demonstrating the relations of these variables in an attempt to enlighten the behavior of thermal effect on rocks. Results can be useful for several applications, such as understanding and conferring regional thermal flow results, predicting the behavior of thermal effect on rocks based upon macroscopic evaluation (texture and mineralogy), in the building construction field in order to provide more precise information on data refinement on thermal properties emphasizing a rocky material thermal conductivity, and especially in the dimension stone industry in order to open a discussion on the use of these variables as a new technological parameter directly related to thermal comfort. Thermal conductivity data were obtained by using Anter Corporation s QuicklineTM -30 a thermal property measuring equipment. Measurements were conducted at temperatures ranging between 25 to 38 OC in samples with 2cm in length and an area of at least 6cm of diameter. As to petrography data, results demonstrated good correlations with quartz and mafics. Linear correlation between mineralogy and thermal conductivity revealed a positive relation of a quartz percentage increase in relation to a thermal conductivity increase and its decrease with mafic minerals increase. As to feldspates (K-feldspate and plagioclase) they show dispersion. Quartz relation gets more evident when compared to sample sets with >20% and <20%. Sets with more than 20% quartz (sienogranites, monzogranites, granodiorites, etc.), exhibit to a great extent conductivity values which vary from 2,5 W/mK and the set with less than 20% (sienites, monzonites, gabbros, diorites, etc.) have an average thermal conductivity below 2,5 W/mK. As to textures it has been verified that rocks considered thick/porphyry demonstrated in general better correlations when compared to rocks considered thin/medium. In the case of quartz, thick rocks/porphyry showed greater correlation factors when compared to the thin/medium ones. As to feldspates (K-feldspate and plagioclase) again there was dispersion. As to mafics, both thick/porphyry and thin/medium showed negative correlations with correlation factor smaller than those obtained in relation to the quartz. As to rocks related to the Streckeisen s QAP diagram (1976), they tend to fall from alcali-feldspates granites to tonalites, and from sienites to gabbros, diorites, etc. Thermal conductivity data correlation with geochemistry confirmed to a great extent mineralogy results. It has been seen that correlation is linear if there is any. Such behavior could be seen especially with the SiO2. In this case similar correlation can be observed with the quartz, that is, thermal conductivity increases as SiO2 is incremented. Another aspect observed is that basic to intermediate rocks presented values always below 2,5 W/mK, a similar behavior to that observed in rocks with quartz <20%. Acid rocks presented values above 2,5 W/mK, a similar behavior to that observed in rocks with quartz >20% (granites). For all the other cases, correlation factors are always low and present opposite behavior to Fe2O3, CaO, MgO, and TiO2. As to Al2O3, K2O, and Na2O results are not conclusive and are statistically disperse. Thermal property knowledge especially thermal conductivity and its application in the building construction field appeared to be very satisfactory for it involves both technological and thermal comfort aspects, which favored in all cases fast, cheap, and precise results. The relation between thermal conductivity and linear thermal dilatation have also shown satisfactory results especially when it comes to the quartz role as a common, determining phase between the two variables. Thermal conductivity studies together with rocky material density can function as an additional tool for choosing materials when considering structural calculation aspects and thermal comfort, for in the dimension stone case there is a small density variation in relation to a thermal conductivity considerable variation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The area studied is located on the north-easternmost portion of the Borborema Province, on the so-called São José de Campestre Massif, States of RN and PB, Northeast Brazil. Field relations and petrographic, geochemical and isotope data permitted the separation of five suites of plutonic rocks: alkali-feldspar granite (Caxexa Pluton), which constitutes the main subject of this dissertation, amphibole-biotite granite (Cabeçudo Pluton), biotite microgranite, gabbronorite to monzonite (Basic to Intermediate Suite) and aluminous granitoid. The Caxexa Pluton is laterally associated to the Remígio Pocinhos Shear Zone, with its emplacement along the mylonitic contact between the gneissic basement and the micashists. This pluton corresponds to a syntectonic intrusion elongated in the N-S direction, with about 50 km2 of outcropping surface. It is composed exclusively of alkali-feldspar granites, having clinopyroxene (aegirine-augite and hedenbergite), andradite-rich garnet, sphene and magnetite. It is classified geochemically as high silica rocks (>70 % wt), metaluminous to slightly peraluminous (normative corindon < 1%), with high total alkalis (>10% wt), Sr, iron number (#Fe=90-98) and agpaitic index (0.86-1.00), and positive europium anomaly. The Cabeçudo Pluton is composed of porphyritic rocks, commonly containing basic to intermediate magmatic enclaves often with mingling and mixing textures. Petrographically, it presents k-feldspar and plagioclase phenocrysts as the essential minerals, besides the accessories amphibole, biotite, sphene and magnetite. It is metaluminous and shows characteristics transitional between the calc-alkaline and alkaline series (or monzonitic subalkaline). Its REE content is greater than those ones of the Caxexa Pluton and biotite microgranite, and all spectra have negative europium anomalies. The biotite microgranites occur mainly on the central and eastern portion of the mapped area, as dykes and sheets with decimetric thickness, hosted principally in orthogneisses and micashists. Their field relationships as regards the Caxexa and Cabeçudo plutons suggested that they are late-tectonic intrusions. They are typically biotite granites, having also sphene, amphibole, allanite, opaques and zircon in the accessory assemblage. Geochemically they can be distinguished from the porphyritic types because the biotite microgranites are more evolved, peraluminous, and have more fractionated REE spectra. The Basic to Intermediate rocks form a volumetrically expressive elliptical, kilometric scale body on the Southeast, as well as sheets in micashists. They are classified as gabbronorites to monzonites, with the two pyroxenes and biotite, besides subordinated amounts of amphibole, sphene, ilmenite and allanite. These rocks do not show a well-defined geochemical trend, however they may possibly represent a monzonitic (shoshonitic) series. Their REE spectra have negative europium anomalies and REE contents greater than the other suites. The aluminous granitoids are volumetrically restricted, and have been observed in close association with migmatised micashists bordering the gabbronorite pluton. They are composed of almandine-rich garnet, andalusite, biotite and muscovite, and are akin to the peraluminous suites. Rb-Sr (whole rock) and Sm-Nd (whole-rock and mineral) isotopes furnished a minimum estimate of the crystallization (578±14 Ma) and the final resetting age of the Rb-Sr system (536±4 Ma) in the Caxexa Pluton. The aluminous granitoid has a Sm-Nd garnet age similar to that one of the Caxexa Pluton, that is 574±67 Ma. The strong interaction of shear bands and pegmatite dykes favoured the opening of the Rb-Sr system for the Caxexa Pluton and biotite microgranite. The amphibole-plagioclase geothermometer and the Al-in amphibole geobarometer indicate minimum conditions of 560°C and 7 kbar for the Cabeçudo Pluton, 730°C and 6 kbar for the microgranite and 743°C and 5 kbar for the basic to intermediate suite. The Zr saturation geothermometer reveals temperatures of respectively 855°C, 812°C and 957°C for those suites, whereas the Caxexa Pluton shows temperatures of around 757°C. The Caxexa, Cabeçudo and microgranites suites crystallized under high fO2 (presence of magnetite). On the other hand, the occurrence of ilmenite suggests less oxidant conditions in the basic to intermediate suite. Field relations demonstrate the intrusive character of the granitoids into a tectonically relatively stable continental crust. This is corroborated by petrographic and geochemical data, which suggest a late- or post-collisional tectonic context. It follows that the generation and emplacement of those granitoid suites is related to the latest events of the Brasiliano orogeny. Finally, the relationships between eNd (600 Ma), TDM (Nd) and initial Sr isotope ratio (ISr) do not permit to define the precise sources of the granitoids. Nevertheless, trace element modelling and isotopic comparisons suggest the participation of the metasomatised mantle in the generation of these suites, probably modified by different degrees of crustal contamination. In this way, a metasomatised mantle would not be a particular characteristic of the Neoproterozoic lithosphere, but a remarkable feature of this portion of the Borborema Province since Archaean and Paleoproterozoic times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brasiliano Cycle in the Seridó Belt (NE Brazil) is regarded mostly as a crustal reworking event, characterized by transcurrent or transpressional shear zones which operated under high temperature and low pressure conditions. In the eastern domain of this belt- the so-called São José de Campestre Massif (SJCM), a transtensional deformation regime is evidenced by extensional components or structures associated to the strikeslip shear zones. The emplacement of the Neoproterozoic Brasiliano granitoids is strongly controled by these discontinuities. Located in the southern border of the SJCM, the Remígio-Pocinhos shear zone (RPSZ) displays, in its northern half, top to the SW extensional movement which progressively grade, towards its southern half, to a dextral strike-slip kinematics, defining a negative semi-flower structure. This shear zone is overprinted upon allocthonous metasediments of the Seridó Group and an older gneiss-migmatite complex, both of which containing metamorphic parageneses from high amphibolite to granulite facies (the latter restricted to the strike-slip zone), defining the peak conditions of deformation. Several granitoid plutons are found along this structure, emplaced coeval with the shearing event. Individually, such bodies do not exceed 30 km2 in outcropping area and are essentially parallel to the trend of the shear zone. Petrographic, textural and geochemical data allow to recognize five different granitoid suites along the RPSZ: porphyritic granites (Serra da Boa Vista and Jandaíra), alkaline granites (Serra do Algodão and Serra do Boqueirão) and medium to coarse-grained granites (Olivedos) as major plutons, while microgranite and aluminous leucogranite sheets occur as minor intrusions. The porphyritic granites are surrounded by metasediments and present sigmoidal or en cornue shapes parallel to the trend of the RPSZ, corroborating the dextral kinematics. Basic to intermediate igneous enclaves are commonly associated to these bodies, frequently displaying mingling textures with the host granitoids. Compositionally these plutons are made up by titanite-biotite monzogranites bearing amphibole and magnetite; they are peraluminous and show affinities to the monzonitic, subalkaline series. Peraluminous, ilmenite-bearing biotite monzogranites and titanite-biotite monzogranites correspond, respectivally, to the Olivedos pluton and the microgranites. The Olivedos body is hosted by metasediments, while the microgranites intrude the gneiss-migmatite complex. Being highly evolved rocks, samples from these granites plot in the crustal melt fields in discrimination diagrams. Nevertheless, their subtle alignment also looks consistent with a monzonitic, subalkaline affinity. These chemical parameters make them closer to the I-type granites. Alkaline, clearly syntectonic granites are also recognized along the RPSZ. The Serra do Algodão and Serra do Boqueirão bodies display elongated shapes parallel to the mylonite belt which runs between the northern, extensional domain and the southern strike-slip zone. The Serra do Algodão pluton shows a characteristic isoclinal fold shape structure. Compositionally they encompass aegirine-augite alkali-feldspar granites and quartz-bearing alkaline syenite bearing garnet (andradite) and magnetite plus ilmenite as opaque phases. These rocks vary from meta to peraluminous, being correlated to the A-type granites. Aluminous leucogranites bearing biotite + muscovite ± sillimanite ± garnet (S-type granites) are frequent but not volumetrically important along the RPSZ. These sheet-like bodies may be folded or boudinaged, representing partial melts extracted from the metasediments during the shear zone development. Whole-rock Rb-Sr isotope studies point to a minimum 554��10 Ma age for the crystalization of the porphyritic granites. The alkaline granites and the Olivedos granite produced ca. 530 Ma isochrons which look too young; such values probably represent the closure of the Rb-Sr radiometric clock after crystallization and deformation of the plutons, at least 575 Ma ago (Souza et al. 1998). The porphyritic and the alkaline granites crystallized under high oxygen fugacity conditions, as shown by the presence of both magnetite and hematite in these rocks. The presence of ilmenite in the Olivedos pluton suggests less oxidizing conditions. Amphibole and amphibole-plagioclase thermobarometers point to minimum conditions, around 750°C and 6 Kbars, for the crystallization of the porphyritic granites. The zirconium geothermometer indicates higher temperatures, in the order of 800°C, for the porphyritic granites, and 780°C for the Olivedos pluton. Such values agree with the thermobarometric data optained for the country rocks (5,7 Kbar and 765°C; Souza et al. 1998). The geochemical and isotope data set point to a lower crustal source for the porphyritic and the alkaline granites. Granulite facies quartz diorite to tonalite gneisses, belonging or akin to the gneiss-migmatite complex, probably dominate in the source regions. In the case of the alkaline rocks, subordinate contributions of mantle material may be present either as a mixing magma or as a previously added component to the source region. Tonalite to granodiorite gneisses, with some metasedimentary contribution, may be envisaged for the Olivedos granite. The diversity of granitoid rocks along the RPSZ is explained by its lithospheric dimension, allowing magma extraction at different levels, from the middle to lower crust down to the mantle. The presence of basic to intermediate enclaves, associated to the porphyritic granites, confirm the participation of mantle components in the magma extraction system along the RPSZ. This mega-structure is part of the network of Brasiliano-age shear zones, activated by continental collision and terrane welding processes at the end of the Neoproterozoic

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes the igneous suites of the Japi granitoid pluton, intrusive in the Paleoproterozoic gneiss-migmatite complex of the eastern domain of the Seridó Belt, northeastern Brazil. Field relations show that the pluton is affected by strong deformation associated to the Brasiliano orogeny (known as the D3 phase) , with a NW-trending extensionalleft-hand senestral shear zone (the Japi Shear Zone, JSZ) bordering the intrusive body to the west. Four plutonic suites are found in the main pluton and as satellyte intrusions, besides Iate pegmatite and pink leucogranites. An alkaline granitoid suite, dominated by syenogranites bearing sodic augite (and subordinate hornblende), define a main elliptical intrusion. In its northern part, this intrusion is made up by concentric sheets, contrasting with a smaller rounded stock to the south. These granites display a pervasive solid-state S>L fabric developed under high T conditions, characterized by plastic deformation of quartz and feldspar. It is especially, developed along the border of the pluton, with inward dips. A regular magmatic layering is present sometimes, parallel to the tectonic foliation. The syntectonic emplacement as regards to the Brasiliano (D3) event is indicated by the common occurrence of dykes and sheets along transtensional or extensional sites of the major structure. Field relations attest to the early emplacement of the alkaline granites as regards to the other suites. A basic-to-intermediate suite occurs as a western satellyte body and occupying the southern tail of the main alkaline pluton. It comprises a wide variety of compositional terms, including primitive gabbros and gabbro-norites, differentiated to monzonitic intermediate facies containing amphibole and biotite as their main mafic phases. These rocks display transitional high-K calc-alkaline to shoshonitic affinities. Porphyritic monzogranite suítes commonly occur as dykes and minor intrusives, isolated or associated with the basic-tointermediate rocks. In the latter case, magma mingling and mixing features attest that these are contemporaneous igneous suites. These granites show K-feldspar phenocrysts and a hornblende+biotite+titanite assemblage, displaying subalkaline/monzonitic geochemical affinities. Both suites exhibit SL magmatic fabrics overprinting or transitional to solid-state D3 deformation related to the JSI. Chemical data clearly show that they are related to different parental magmas. Finally, a microgranite suite occurs along a few topographic ridges paralell to the JSI. It comprises dominantly granodiorites with a mineralogy similar to the one of the porphyritic granitoids. However, discriminant diagrams show their distinct calc-alkaline affinity. The granodiorites display an essencially magmatic fabric, even though an incipient D3 solid-state structure may be developed along the JSI. Intrusion relationships with the previous suites, as well as regards to the D3 structures, point to their Iate emplacement. All these suites are intrusive in a Paleoproterozoic, high-grade gneiss-migmatite complex affected by two previous deformation phases (D1, D2). The fabrics associated with these earlier events are folded and overprinted by the younger D3 structures along the JSZ. The younger deformation is characterized by NE-dipping foliations and N/NE-plunging stretching lineations. In the JSZ northern termination the foliation acquires an ENE orientation, containing a stretching lineation plunging to the south. Symmetric kinematic cri teria developed at this site confirms the transpressional termination of the JSZ, as also shown by orthorrombic quartz c-axis patterns. E-W-trending d extra I shear zones developed in the central part of the JSZ are interpreted as antithetic structures associated to the transtensional deformation along the JSZ. This is consistent with its extensional-transcurrent kinematics and a flat-and-ramp geometry at depth, as shown by gravimetric data. The lateral displacement of the negative residual Bouguer anomalies, as regards to the main outcropping alkaline pluton, may be modelized by other deeper-seated granite bodies. Based on numerical modelling it was possible to infer two distinct intrusion styles for the alkaline pluton. The calculated model values are consistent with an emplacement by sheeting for the northern body, as already suggested by satellyte imagery and field mapping. On the other hand, the results point to a transition towards a diapir-related style associated to the smaller. southern stock. This difference in intrusion styles may relate to intensity variations and transtensional sites of the shear deformation along the JSZ. Trace element and Sr and Nd isotopes of the alkaline granites are compatible with their derivation trom a more basic crustal source, as compared to the presently outcropping highgrade gneisses, with participation (or alternatively dominated by) of an enriched lithospheric mantle component. Like other igneous suites in the Seridó Belt, the high LlL contents and fractionated REE patterns of the basic rocks also point to an enriched mantle as the source for this kind of magmatism. Geochemical and isotope data are compatible with a lower crustal origin for the porphyritic granites. On the basis of the strong control of the JSZ on the emplacement of lower crustal (porphyritic and alkaline granites) or lithospheric mantle (basic rocks, alkaline granites or a component of them) magmas, one may infer a deep root for this structure, bearing an important role in magma extraction, transport and emplacement in the Japi region, eastern domain of the Seridó Belt

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of the present study is to integrate a geological and technological investigation of ornamental rocks of the Flores and Jacarandá granites, which are located near the Afonso Bezerra city, in the north central part of the Rio Grande do Norte State. The study area encompasses four litho-stratigrafic units: a Gneiss-Migmatitic Complex(cristalline basement), which is mainly composed of banded gneisses, usually deformed as mylonitic rocks and with several migmatic features, an Augen Gneiss, which occurs as an elongated body that constitutes the Jacarandá granite, a small granite stock, which presents a semi-circular form, named Flores granite, composed of pink, fine to medium coarse rocks, and fine to coarse alluvial sediments, which form extensive areas of large fluvial deposits. The technological characterization of the Flores and Jacarandá granites, carried out through several tests, has as the main purpose the determination of petrographic, physical, and mechanic parameters that allowed the characterization of these rocks. The test followed procedures recommended by Brazilian (ABNT Associação Brasileira de Normas Técnicas) and foreigner institutions (ASTM American Society for Testing and Materials). The petrografhic analysis indicated that the rocks investigated are granite sensu estrictu, summing an average 85-90% modal. The Flores granite is the more felsic rock, which presents mafic content ∼ 10% and monzonitic composition. The Jacarandá granite is an Augen Gneiss rock that presents sienogranitic composition and mafic modal content ∼ 15%. Several technological tests carried out (alterability, physical indices, velocity of ultrasonic wave propagation, uniaxial compression, flection resistence, Amsler desgaste, and resistence to freezing and heating) indicated that parameters and values were identical for both granites investigated. These parameters and values are consistent with the Brazilian and international standards for siliciclastic rocks of ornamental use, as well as other Brazilian ornamental granites. The analysis of all results indicates that both the Flores and Jacarandá granites present good quality, and that they are indicated for ornamental use of revetment interior and exterior of buildings

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study area is located at the eastern-central portion of the Seridó Belt, on the interface between the Seridó Group Metasediments and the crystalline basement rocks of the Caicó Complex (RN). Petrographic and geochemical data allow us to define aspects related to the genesis and evolution of the Serra Verde Pluton magmas, which composes the goal of this dissertation The Serra Verde Pluton is a stock with outcropping area of about 25 km², which is intrusive into metasedimentary sequence and the basement gneisses. The pluton intrusion is sintectonic to the Brasiliano event, elongated along the NE direction, developing a cornue geometry. The rock is a monzogranite mainly composed by K-feldspar, plagioclase and quartz, which usually compose more than 85% of the modal analisys. The main mafic mineral is the biotite, while amphibole, sphene, epidote, opaque minerals, allanite, zircon and apatite occur as accessory minerals. It features still a latemagmatic paragenesis composed by chlorite, granular epidote, carbonates and muscovite, developed through the percolation of late CO2 and H2O rich fluids. Chemically, the Serra Verde Pluton rocks may be classified as metaluminous, of calc-alkaline affiliation, sometimes showing trondhjemític characteristics, with high Na2O (>4,5%), Sr (>400ppm) and Ba (>800ppm) and low K2O (≤3,0%), MgO (<1,0%), TiO2 (<0,5%), Rb (<90ppm), Y (≤16ppm) and Zr (≤13ppm). Micropetrographic evidences (mineral assembly and microtextures) indicate that the magma evolution occurred in moderated to high fO2 conditions, above the FMQ buffer. Thermo-barometric data obtained by minor elements geochemistry and the CIPW data, suggest a final/minimal pressure crystallization for the Serra Verde Pluton samples of about 3 to 5 kbar, liquidus temperature around 800o C, solidus temperature between 680o and 660o C. This data is compatible with those observed by many authors for the Neoproterozoic granites of the Seridó Belt. The group of analyzed data (Petrographic, microtextural and geochemical), suggests that the dominant process of the generation and evolution of the Serra Verde Granite magma was the fractional crystallization, probably from basement quartz-dioritic and tonalitic orthogneisses source

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Portalegre shear zone (ZCPa), which is located in the Rio Grande do Norte and Paraíba states (Northeastern Brazil), is na important right-lateral, northeast-trending lineament formed during the Brazilian Orogenic Cicle). The ZCPa experienced na important brittle reactivation from the Mesozoic until the present. This reactivation led to the formation of the Gangorra, Pau dos Ferros, Coronel João Pessoa, Icozinho and Rio do Peixe basins. The reactivation northern parto f the ZCPa that marks the boundary of the Potiguar Basin is denominated Carnaubais Fault. Several fracture patterns were mapped along the ZCPa. Samples were collected in Neoproterozoic granite outcrops, along the ZCPa. These samples yielded AFT ages from 86±13 to 376±57 Ma, and the mean track length from 10.9±0.8 to 12.9±1.5 mm. Samples from the East block yielded mean ages of 103 Ma, mean track lengtn 12,1mm, and mean altitude 250m, whereas samples from West block yielded mean ages of 150 Ma, which reach 345 Ma and 220 Ma in the Pau dos Ferros and Coronel João Pessoa basins, respectively. Thermal history models were sorted out for each crustal block. Samples from West block recorded a thermal history from Carboniferous Period until the Permiano, when the block experienced gradual uplift until the Cretaceous, when it underwent downfaulting and heating until the Tertiary, and it eventually experienced a rapid uplift movement until recent times. Samples from the East block presented the same cooling and heating events, but at they occurred different times. The East block thermal record started ~140 Ma, when this block experienced cooling until ~75 Ma. Both blocks show a denundacion/erosional history more similar in the Tertiary. The AFT data indicate an important tectonic event ~140 Ma, when the West block experienced downfaulting and the East block experienced uplift. This tectonic process led to the generation of several sedimentary basins in the region, including the Potiguar basin. This tectonic event is also interpreted as a rift process caused by an E-W-trending extension. It the Tertiary, some heating events can be tentatively attributed to the macau volcanic event

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final stage of Brasiliano/Pan-African orogeny in the Borborema Province is marked by widespread plutonic magmatism. The Serra da Macambira Pluton is an example of such plutonism in Seridó Belt, northeastern Borborema Province, and it is here subject of geological, petrographic, textural, geochemical and petrogenetic studies. The pluton is located in the State of Rio Grande do Norte, intrusive into Paleoproterozoic orthogneisses of the Caicó Complex and Neoproterozoic metassupracrustal rocks of the Seridó Group. Based upon intrusion/inclusion field relationships, mineralogy and texture, the rocks are classified as follows: intermediate enclaves (quartz-bearing monzonite and biotite-bearing tonalite), porphyritic monzogranite, equigranular syenogranite to monzogranite, and late granite and pegmatite dykes. Porphyritic granites and quartz-bearing monzonites represent mingling formed by the injection of an intermediate magma into a granitic one, which had already started crystallization. Both rocks are slightly older than the equigranular granites. Quartz-bearing monzonite has K-feldspar, plagioclase, biotite, hornblende and few quartz, meanwhile biotite-bearing tonalite are rich in quartz, poor in K-feldspar and hornblende is absent. Porphyritic and equigranular granites display mainly biotite and rare hornblende, myrmekite and pertitic textures, and zoned plagioclase pointing out to the relevance of fractional crystallization during magma evolution. Such granites have Rare Earth Elements (REE) pattern with negative Eu anomaly and light REE enrichment when compared to heavy REE. They are slight metaluminous to slight peraluminous, following a high-K calc-alkaline path. Petrogenesis started with 27,5% partial melting of Paleoproterozoic continental crust, generating an acid hydrous liquid, leaving a granulitic residue with orthopyroxene, plagioclase (An40-50), K-feldspar, quartz, epidote, magnetite, ilmenite, apatite and zircon. The liquid evolved mainly by fractional crystallization (10-25%) of plagioclase (An20), biotite and hornblende during the first stages of magmatic evolution. Granitic dykes are hololeucocratic with granophyric texture, indicating hypabissal crystallization and REE patterns similar to A-Type granites. Preserved igneous textures, absence or weak imprint of ductile tectonics, association with mafic to intermediate enclaves and alignment of samples according to monzonitic (high-K calcalkaline) series all indicate post-collisional to post-orogenic complexes as described in the literature. Such interpretation is supported by trace element discrimination diagrams that place the Serra da Macambira pluton as late-orogenic, probably reflecting the vanishing stages of the exhumation and collapse of the Brasiliano/Pan-African orogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The of Serrinha plutonic suite, northeastern portion of the Borborema Province (NE Brazil), is characterized by a voluminous and diversified magmatism of Neoproterozoic age, intrusive in the Archean to Paleoproterozoic gneissic-migmatitic basement of the São José de Campestre massif. Field relations and petrographic and geochemical data allowed us to individualize different lithologic types among this plutonic suite, which is represented by intermediate to mafic enclaves, porphyritic diorites, porphyritic granitoids, porphyritic granodiorites, microporphyritic granites and dykes/sheets of microgranite. The intermediate-to-mafic enclaves occur associated with porphyritic granitoids, showing mixture textures. The porphyrytic diorites occur as isolated bodies, generally associated with intermediate-to-mafic enclaves and locally as enclaves within porphyritic granites. The granodiorites represent mixing between an intermediate to mafic magma with an acidic one. The micropophyritic granites occur as isolated small bodies, generally deformed, while the microgranite dykes/sheets crosscut all the previous granitoids. A U-Pb zircon age of 576 + 3 Ma was obtained for the Serrinha granite. This age is interpreted as age of the peak of the regional ductile deformational event (D3) and of the associated the E-W Rio Jacu shear zone, which control the emplacement of the Neoproterozoic syntectonic plutons. The porphyrytic granitoids show monzogranitic composition, transitional between peraluminous and metaluminous types, typically of the high potassium subalkaline-calc-alkaline series. The intermediate-to-mafic enclaves present vary from quartz diorite to tonalite/granodiorite, with metaluminous, shoshonitic affinity. The diorites are generally quartz-monzodiorite in composition, with metaluminous, subalkaline affinity. They display coarse-grained, inequigranular, porphyrytic texture, with predominance of plagioclase phenocrystals immersed in a matrix composed of biotite and pyroxenes. The microporphyrytic granites are essentially monzogranites of fine- to medium-grained texture, whereas microgranite dikes/sheets varying from monzogranites to syenogranites, with fine to media texture, equigranular. The diversified magmatism occurring at a relatively small surface associated with shear zones, suggests lithospheric dimensions for such structures, with magma extractions from different depths within the lower crust and upper mantle. The geological, geochemical and geochronological characteristics of the Serrinha plutonic suite suggest a pos-collisional geodynamic context for the Neoproterozoic magmatism. Thermobarometric data show emplacement conditions in the range 5-6 kbar (AlTamphibole) and 730-740°C (plagioclase-amphibole) for the porphyrytic granitoids (Serrinha body) and the intermediate-to-mafic enclaves