4 resultados para 090402 Catalytic Process Engineering

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic cracking of triglycerides presents itself as a possible alternative to the production of biofuels with low emission of pollutants. In this work were synthesized the SAPO-5, the catalysts for the cracking reaction of soybean oil is presented. The solids were powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG) and infrared spectroscopy (FTIR). The analyses indicated that the synthesis method has employed to obtain materials with high surface area and high acid. The soybean oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. The products obtained in the cracking of soybean oil were analyzed by distillation, acid number, infra-red spectroscopy, density, viscosity, carbon residue, cetane number determination and characterization. The analysis of the products obtained in the presence and in the absence of the SAPO-5 permitted to conclude that all the solids tested presented catalytic activity in the deoxygenation of final products only at the second step of the cracking process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to obtain a biofuel similar to mineral diesel, lanthanum-incorporated SBA- 15 nanostructured materials, LaSBA-15(pH), with different Si/La molar ratios (75, 50, 25), were synthesized in a two-steps hydrothermal procedure, with pH-adjusting of the synthesis gel at 6, and were used like catalytic solids in the buriti oil thermal catalytic cracking. These solids were characterized by X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), infrared spectroscopy (FTIR), nitrogen porosimetry and ethanol dehydration, aiming to active sites identify. Taken together, the analyses indicated that the synthesis method has employed to obtain materials highly ordered mesostructures with large average pore sizes and high surface area, besides suggested that the lanthanum was incorporated in the SBA-15 both into the framework as well as within the mesopores. Catalytic dehydration of ethanol over the LaSBA-15(pH) products has shown that they have weak Lewis acid and basic functionalities, indicative of the presence of lanthanum oxide in these samples, especially on the La75SBA-15(pH) sample, which has presented the highest selectivity to ethylene. The buriti oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. One the other hand, OL coming from second ones, called green diesel (GD), have presented low acid index, particularly that one obtained from the thermal catalytic process realized over LaSBA-15(pH) samples. The acid sites presence in these samples, associated to their large average pore sizes and high surface areas, have allowed them, especially the La75SBA-15(pH), to present deoxygenating activity in the buriti oil thermal catalytic cracking, providing an oxygenates content reduction, particularly carboxylic acids, in the GD. Furthermore, the GD comes from the second liquid fraction obtained in the buriti oil thermal catalytic cracking over this latest solid sample has shown hydrocarbons composition and physic-chemical properties similar to that mineral diesel, beyond sulfur content low

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfur compounds emissions have been, on the late years, subject to more severe environmental laws due to its impact on the environment (causing the acid rain phenomena) and on human health. It has also been object of much attention from the refiners worldwide due to its relationship with equipment’s life, which is decreased by corrosion, and also with products’ quality, as the later may have its color, smell and stability altered by the presence of such compounds. Sulfur removal can be carried out by hydrotreating (HDT) which is a catalytic process. Catalysts for HDS are traditionally based on Co(Ni)-Mo(W)/Al2O3. However, in face of the increased contaminants’ content on crude oil, and stricter legislation on emissions, the development of new, more active and efficient catalysts is pressing. Carbides of refractory material have been identified as potential materials for this use. The addition of a second metal to carbides may enhance catalytic activities by increasing the density of active sites. In the present thesis Mo2C with Co addition was produced in a fixed bed reactor via gas-solid reaction of CH4 (5%) and H2(95%) with a precursor made of a mix of ammonium heptamolybdate [(NH4)6[Mo7O24].4H2O] and cobalt nitrate[Co(NO3)2.6H2O] at stoichiometric amounts. Precursors’ where analyzed by XRF, XRD, SEM and TG/DTA. Carboreduction reactions were carried out at 700 and 750°C with two cobalt compositions (2,5 and 5%). Reaction’s products were characterized by XRF, XRD, SEM, TOC, BET and laser granulometry. It was possible to obtain Mo2C with 2,5 and 5% cobalt addition as a single phase at 750°C with nanoscale crystallite sizes. At 700°C, however, both MoO2 and Mo2C phases were found by XRD. No Co containing phases were found by XRD. XRF, however, confirmed the intended Co content added. SEM images confirmed XRD data. The increase on Co content promoted a more severe agglomeration of the produced powder. The same effect was noted when the reaction temperature was increased. The powder synthesized at 750°C with 2,5% Co addition TOC analysis indicated the complete conversion from oxide material to carbide, with a 8,9% free carbon production. The powder produced at this temperature with 5% Co addition was only partially converted (86%)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Researches in Requirements Engineering have been growing in the latest few years. Researchers are concerned with a set of open issues such as: communication between several user profiles involved in software engineering; scope definition; volatility and traceability issues. To cope with these issues a set of works are concentrated in (i) defining processes to collect client s specifications in order to solve scope issues; (ii) defining models to represent requirements to address communication and traceability issues; and (iii) working on mechanisms and processes to be applied to requirements modeling in order to facilitate requirements evolution and maintenance, addressing volatility and traceability issues. We propose an iterative Model-Driven process to solve these issues, based on a double layered CIM to communicate requirements related knowledge to a wider amount of stakeholders. We also present a tool to help requirements engineer through the RE process. Finally we present a case study to illustrate the process and tool s benefits and usage