73 resultados para Materiais isolantes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The static and cyclic assays are common to test materials in structures.. For cycling assays to assess the fatigue behavior of the material and thereby obtain the S-N curves and these are used to construct the diagrams of living constant. However, these diagrams, when constructed with small amounts of S-N curves underestimate or overestimate the actual behavior of the composite, there is increasing need for more testing to obtain more accurate results. Therewith, , a way of reducing costs is the statistical analysis of the fatigue behavior. The aim of this research was evaluate the probabilistic fatigue behavior of composite materials. The research was conducted in three parts. The first part consists of associating the equation of probability Weilbull equations commonly used in modeling of composite materials S-N curve, namely the exponential equation and power law and their generalizations. The second part was used the results obtained by the equation which best represents the S-N curves of probability and trained a network to the modular 5% failure. In the third part, we carried out a comparative study of the results obtained using the nonlinear model by parts (PNL) with the results of a modular network architecture (MN) in the analysis of fatigue behavior. For this we used a database of ten materials obtained from the literature to assess the ability of generalization of the modular network as well as its robustness. From the results it was found that the power law of probability generalized probabilistic behavior better represents the fatigue and composites that although the generalization ability of the MN that was not robust training with 5% failure rate, but for values mean the MN showed more accurate results than the PNL model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We built an experimental house on an UFRN´s land using blocks made by a composite consisting of cement, plaster, EPS, crushed rubber and sand. Several blocks were made from various compositions and we made preliminary tests of mechanical and thermal resistance, choosing the most appropriate proportion. PET bottles were used inside the block to provide thermal resistance. In this work, a second function was given to the bottles: to serve as a docking between the blocks, because the ends of the cylinders came out of each block on top as well as at the bottom, with the bottom cut, allowing to fit of the extremities of the upper cylinder of a block in the lower holes of the other one, which were formed by the cutting already mentioned. Minimum compression tests were performed according to ABNT standards for walls closing blocks (fence). With that house built, we did studies of thermal performance in order to ascertain conditions of comfort, checking external and internal temperatures in the walls and in the ambient, among other variables, such as wind speed and relative humidity. The resulting blocks provided adequate thermal insulation to the environment, where the walls presented differences up to 11.7 ºC between the outer and inner faces, getting the maximum temperature inside the house around 31 °C, within the so-called thermal comfort zone for warm climates. At the end of the experiments it was evident the effectiveness of that construction in order to provide thermal comfort in the internal environment of the house, as well as we could confirm the viability of building houses from recyclable materials, reducing the constructive costs, becoming a suitable alternative for low- incoming families. Moreover, besides the low cost, the proposal represents an alternative use of various recyclable materials, therefore considered an ecological solution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes the development of an innovative material made from a vegetable polyurethane matrix and load of industrial waste, from retread tires, for thermal insulation and environmental comfort. Experimental procedures are presented, as well as the results of the thermal and acoustic performance of this composite material, made from an expansive foam derived from the castor seed oil and fiber of scrap tires. The residue was treated superficially with sodium hydroxide, to eliminate contaminants, and characterized macroscopically and microscopically. Samples were produced with addition of residues at levels of 5%, 10%, 15% and 20% by weight, for determination of thermal properties: conductivity, heat capacity and thermal diffusivity, sound absortion index and density. The results were compared to commercially available thermal insulation and sound absorbing products. According to the analysis of results, it was concluded that the developed composite presents characteristics that qualify it as a thermal insulation with superior performance, compared to commercial available insulation, and sound absorption capacity greater than the castor oil polyurethane s, without addition of the residue

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of reflective surfaces functioning as thermal insulator has grown significantly over the years. Reflective thermal insulator are materials that have several characteristics such as low emissivity, low absorptivity and high reflectivity in the infrared spectrum. The use of these materials has grown a lot lately, since it contains several important radioactive properties that minimize the heat loss of thermal systems and cooling systems that are used to block the heat on the roof of buildings. A system made of three surfaces of 316 stainless steel mirror was built to analyze the influence of reflective surfaces as a way to reduce the heat loss and thereby conserve the energy of a thermal system. The system was analyzed both with and without the presence of vacuum, and then compared with a system that contained glass wool between the stainless steel mirror walls, since this isolator is considered resistive and also broadly used around the world in thermal systems. The reflectivity and emissivity of the surfaces used were also measured in this experiment. A type K thermocouple was fixed on the wall of the system to obtain the temperature of the stainless steel mirror surfaces and to analyze the thermal behavior of each configuration used. The results showed an efficiency of 13% when the reflective surfaces were used to minimize the heat loss of the thermal system. However, the system with vacuum had the best outcome, a 60% efficiency. Both of these were compared to the system made of glass wool as a thermal insulator

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two models of blocks made of composite material obtained from the use of cement, plaster, EPS crushed, shredded tire, mud, sand and water, for the construction of popular housing. Were made metal molds for the manufacture of blocks to be used in the construction of a residence for low-income families. Performed tests of compressive strength of the composite for various formulations that met the specific standard for blocks used in construction. To study the thermal conductivity of the composite for further study of thermal comfort generated in a residence built with the proposed composite. We also determined the mass-specific and water absorption for each formulation studied. Using a home already built with another composite material, made up the closing of a window with the building blocks and found the thermal insulation, measuring external and internal temperatures of the blocks. The blocks had made good thermal insulation of the environment, resulting in differences of up to 12.6°C between the outer and inner faces. It will be shown the feasibility of using composite for the end proposed and chosen the most appropriate wording

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decontamination of the materials has been subject of some studies. One of the factors that it increases the pollution is the lack of responsibility in the discarding of toxic trash, as for example the presence of PCB (Polychlorinated Biphenyls) in the environment. In the Brazilian regulations, the material contaminated with PCB in concentrations higher than 50 ppm must be stored in special places or destroyed, usually by incineration in plasma furnace with dual steps. Due to high cost of the procedure, new methodologies of PCBs removal has been studied. The objective of this study was to develop an experimental methodology and analytical methodology for quantification of removal of PCBs through out the processes of extractions using supercritical fluid and Soxhlet method, also technical efficiency of the two processes of extraction, in the treatment of contaminated materials with PCBs. The materials studied were soils and wood, both were simulated contamination with concentration of 6.000, 33.000 and 60.000 mg of PCB/ kg of materials. Soxhlet extractions were performed using 100 ml of hexane, and temperature of 180 ºC. Extractions by fluid supercritical were performed at conditions of 200 bar, 70°C, and supercritical CO2 flow-rate of 3 g/min for 1-3 hours. The extracts obtained were quantified using Gas chromatography-mass spectrometry (GC/MS). The conventional extractions were made according to factorial experimental planning technique 22, with aim of study the influence of two variables of process extraction for the Soxhlet method: contaminant concentration and extraction time for obtain a maximum removal of PCB in the materials. The extractions for Soxhlet method were efficient for extraction of PCBs in soil and wood in both solvent studied (hexane and ethanol). In the experimental extraction in soils, the better efficient of removal of PCBs using ethanol as solvent was 81.3% than 95% for the extraction using hexane as solvent, for equal time of extraction. The results of the extraction with wood showed statistically it that there is not difference between the extractions in both solvent studied. The supercritical fluid extraction in the conditions studied showed better efficiency in the extraction of PCBs in the wood matrix than in soil, for two hours extractions the obtain percentual of 43.9 ± 0.5 % for the total of PCBs extracted in the soils against 95.1 ± 0,5% for the total of PCBs extracted in the wood. The results demonstrated that the extractions were satisfactory for both technical studied

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naphthenic lubricating oils are used in transformers with the purpose of promoting electrical insulation and dissipating heat. The working temperature range of these oils typically lies between 60°C and 90°C and their useful life is 40 years in average. In that temperature range, the oils are decomposed during operation, whereby a small fraction of polar compounds are formed. The presence of these compounds may induce failure and loss of physical, chemical and electrical properties of the oil, thus impairing the transformer operation. By removing these contaminants, one allows the oxidized insulating oil to be reused without damaging the equipment. In view of this, an investigation on the use of surfactants and microemulsions as extracting agents, and modified diatomite as adsorbent, has been proprosed in this work aiming to remove polar substances detected in oxidized transformer oils. The extraction was carried out by a simple-contact technique at room temperature. The system under examination was stirred for about 10 minutes, after which it was allowed to settle at 25°C until complete phase separation. In another experimental approach, adsorption equilibrium data were obtained by using a batch system operating at temperatures of 60, 80 and 100°C. Analytical techniques involving determination of the Total Acidity Number (TAN) and infrared spectrophotometry have been employed when monitoring the decomposition and recovery processes of the oils. The acquired results indicated that the microemulsion extraction system comprising Triton® X114 as surfactant proved to be more effective in removing polar compounds, with a decrease in TAN index from 0.19 to 0.01 mg KOH/g, which is consistent with the limits established for new transformer oils (maximal TAN = 0.03 mg KOH/g). In the adsorption studies, the best adsorption capacity values were as high as 0.1606 meq.g/g during conventional adsoprtion procedures using natural bauxite, and as high as 0.016 meq.g/g for the system diatomite/Tensiofix® 8426. Comparatively in this case, a negative effect could be observed on the adsorption phenomenon due to microemulsion impregnation on the surface of the diatomite

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a theoretical study about the properties of magnetic polaritons in superlattices arranged in a periodic and quasiperiodic fashíons. In the periodic superlattice, in order to describe the behavior of the bulk and surface modes an effective medium approach, was used that simplify enormously the algebra involved. The quasi-periodic superlattice was described by a suitable theoretical model based on a transfer-matrix treatment, to derive the polariton's dispersion relation, using Maxwell's equations (including effect of retardation). Here, we find a fractal spectra characterized by a power law for the distribution of the energy bandwidths. The localization and scaling behavior of the quasiperiodic structure were studied for a geometry where the wave vector and the external applied magnetic field are in the same plane (Voigt geometry). Numerical results are presented for the ferromagnet Fe and for the metamagnets FeBr2 and FeCl2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports the study of nanoporous structures, aiming at their use in research directed to the current demand of the petroleum industry to value heavy oil. Initially, two ways were chosen for the synthesis of porous structures from the molecular sieves of type Si-MCM-41. In the first way, the structure MCM-41 is precursory for heteroatom substitutes of silicon, generating catalyst of the type Al-MCM-41 from two different methods of incorporation of the metal. This variation of the incorporation method of Aluminum in the structure of Si-MCM-41 was carried out through the conventional procedure, where the aluminum source was incorporated to the gel of synthesis, and the procedure post-synthesis, where the Aluminum source was incorporated in catalyst after the synthesis of Si-MCM-41. In the second way, the MCM-41 acts as a support for growth of nanocrystals of zeolite embedded in their mesoporous, resulting in hybrid MCM-41/ZSM-5 catalyst. A comparative analysis was carried through characterizations by XRD, FTIR, measures of acidity through n-butylamine adsorption for TGA, SEM-XRF and N2 adsorption. Also crystalline aluminosilicate with zeolitic structure MFI of type ZSM-5 was synthesized without using organic templates. Methodologies to the preparation of these materials are related by literature using conventionally reactants that supply oxides of necessary silicon and aluminum, as well as a template agent, and in some cases co-template. The search for new routes of preparation for the ZSM-5 aimed at, above all, the optimization of the same as for the time and the temperature of synthesis, and mainly the elimination of the use of organic templates, that are material of high cost and generally very toxic. The current study is based on the use of the H2O and Na+ cations playing the role of structural template and charge compensation in the structure. Characterizations by XRD, FTIR, SEM-XRF and N2 adsorption were also conducted for this material in order to compare the samples of ZSM-5 synthesized in the absence of template and those used industrially and synthesized using structuring

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volatile Organic Compounds are pollutants coming mainly from activities that use fossil fuels. Within this class are the BTEX (benzene, toluene, ethylbenzene and xylenes) compounds that are considered hazardous. Among the various existing techniques for degradation of pollutants, there is advanced oxidation using H2O2 generating hidoxil radical ( OH). In this work, the mesoporous material of MCM-41 was synthesized by hydrothermal method and then was used as support, the impregnation of titanium by the method of synthesis with excess solvent to obtain the catalyst Ti-MCM-41. The catalyst was used in the reaction catalyzed removal of BTEX in water using H2O2 as oxidant. The materials were characterized by: XRD, TG/DTG, FTIR, nitrogen adsorption-desorption and FRX-EDX, in order to verify the method of impregnation of the mesoporous titanium support was effective. Catalytic tests were carried out in reactors of 20 mL containing BTEX (100.0 μg/L), H2O2 (2.0 M) and Ti-MCM-41 (2.0 g/L) in acid medium. The reaction occurred for 5 h at 60 °C and analysis were performed by gas chromatography with photoionization detector and static headspace sampler. The characterizations have proven the effectiveness of the synthesis method used and the incorporation of titanium lt in the support. The catalytic tests showed satisfactory results with conversion of more than 95 % for the studied compounds, where the catalyst 48% Ti-MCM-41 showed a higher removal efficiency of the compounds under study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to obtain a biofuel similar to mineral diesel, lanthanum-incorporated SBA- 15 nanostructured materials, LaSBA-15(pH), with different Si/La molar ratios (75, 50, 25), were synthesized in a two-steps hydrothermal procedure, with pH-adjusting of the synthesis gel at 6, and were used like catalytic solids in the buriti oil thermal catalytic cracking. These solids were characterized by X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), infrared spectroscopy (FTIR), nitrogen porosimetry and ethanol dehydration, aiming to active sites identify. Taken together, the analyses indicated that the synthesis method has employed to obtain materials highly ordered mesostructures with large average pore sizes and high surface area, besides suggested that the lanthanum was incorporated in the SBA-15 both into the framework as well as within the mesopores. Catalytic dehydration of ethanol over the LaSBA-15(pH) products has shown that they have weak Lewis acid and basic functionalities, indicative of the presence of lanthanum oxide in these samples, especially on the La75SBA-15(pH) sample, which has presented the highest selectivity to ethylene. The buriti oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. One the other hand, OL coming from second ones, called green diesel (GD), have presented low acid index, particularly that one obtained from the thermal catalytic process realized over LaSBA-15(pH) samples. The acid sites presence in these samples, associated to their large average pore sizes and high surface areas, have allowed them, especially the La75SBA-15(pH), to present deoxygenating activity in the buriti oil thermal catalytic cracking, providing an oxygenates content reduction, particularly carboxylic acids, in the GD. Furthermore, the GD comes from the second liquid fraction obtained in the buriti oil thermal catalytic cracking over this latest solid sample has shown hydrocarbons composition and physic-chemical properties similar to that mineral diesel, beyond sulfur content low

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microporous materials zeolite type Beta and mesoporous type MCM-41 and AlMCM-41 were synthesized hydrothermally and characterized by methods of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, surface acidity, nitrogen adsorption, thermal analysis TG / DTG. Also we performed a kinetic study of sunflower oil on micro and mesoporous catalysts. The microporous material zeolite beta showed a lower crystallinity due to the existence of smaller crystals and a larger number of structural defects. As for the mesoporous materials MCM-41 and AlMCM-41 samples showed formation of hexagonal one-dimensional structure. The study of kinetic behavior of sunflower oil with zeolite beta catalysts, AlMCM-41 and MCM-41 showed a lower activation energy in front of the energy of pure sunflower oil, mainly zeolite beta. In the thermal cracking and thermocatalytic of sunflower oil were obtained two liquid fractions containing an aqueous phase and another organic - organic liquid fraction (FLO). The FLO first collected in both the thermal cracking as the thermocatalytic, showed very high level of acidity, performed characterizations of physicochemical properties of the second fraction in accordance with the specifications of the ANP. The second FLO thermocatalytic collected in cracking of sunflower oil presented results in the range of diesel oil, introducing himself as a promising alternative for use as biofuel liquid similar to diesel, either instead or mixed with it