1 resultado para Degradation
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
This study provides a versatile validated method to determine the total vitamin C content, as the sum of the contents of L-ascorbic acid (L-AA) and dehydroascorbic acid (DHAA), in several fruits and vegetables and its degradability with storage time. Seven horticultural crops from two different origins were analyzed using an ultrahigh-performance liquid chromatographic–photodiode array (UHPLC-PDA) system, equipped with a new trifunctional high strength silica (100% silica particle) analytical column (100 mm×2.1 mm, 1.7 μm particle size) using 0.1% (v/v) formic acid as mobile phase, in isocratic mode. This new stationary phase, specially designed for polar compounds, overcomes the problems normally encountered in HPLC and is suitable for the analysis of large batches of samples without L-AA degradation. In addition, it proves to be an excellent alternative to conventional C18 columns for the determination of L-AA in fruits and vegetables. The method was fully validated in terms of linearity, detection (LOD) and quantification (LOQ) limits, accuracy, and inter/intraday precision. Validation experiments revealed very good recovery rate of 96.6±4.4% for L-AA and 103.1±4.8 % for total vitamin C, good linearity with r2-values >0.999 within the established concentration range, excellent repeatability (0.5%), and reproducibility (1.6%) values. The LOD of the method was 22 ng/mL whereas the LOQ was 67 ng/mL. It was possible to demonstrate that L-AA and DHAA concentrations in the different horticulture products varied oppositely with time of storage not always affecting the total amount of vitamin C during shelf-life. Locally produced fruits have higher concentrations of vitamin C, compared with imported ones, but vegetables showed the opposite trend. Moreover, this UHPLC-PDA methodology proves to be an improved, simple, and fast approach for determining the total content of vitamin C in various food commodities, with high sensitivity, selectivity, and resolving power within 3 min of run analysis.