54 resultados para Isolation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a renewable alternative to fish oil, microbial-derived omega-3-fatty acids can be potential nutritional supplements. This study reported the isolation of novel oleaginous marine microbes from the Victorian marine environment capable of producing omega-3-fatty acids and other bio-actives. Fermentation strategies using low cost substrates improved omega-3-oils production in selected isolates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocelluloses were prepared from sugarcane bagasse celluloses by dynamic high pressure microfluidization (DHPM), aiming at achieving a homogeneous isolation through the controlling of shearing force and pressure within a microenvironment. In the DHPM process, the homogeneous cellulose solution passed through chambers at a higher pressure in fewer cycles, compared with the high pressure homogenization (HPH) process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) demonstrated that entangled network structures of celluloses were well dispersed in the microenvironment, which provided proper shearing forces and pressure to fracture the hydrogen bonds. Gel permeation chromatography (GPC), CP/MAS 13C NMR and Fourier transform infrared spectroscopy (FT-IR) measurements suggested that intra-molecular hydrogen bonds were maintained. These nanocelluloses of smaller particle size, good dispersion and lower thermal stability will have great potential to be applied in electronics devices, electrochemistry, medicine, and package and printing industry. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalase, an oxidoreductase enzyme, works as a detoxification system inside living cells against reactive oxygen species formed as a by-product of different metabolic reactions. The enzyme is found in a wide range of aerobic and anaerobic organisms. Catalase has also been employed in various analytical and diagnostic methods in the form of biosensors and biomarkers in addition to its other applications in textile, paper, food and pharmaceutical industries. New applications for catalases are constantly emerging thanks to their high turnover rate, distinct evolutionary origin, relatively simple and well-defined reaction mechanisms. The following review provides comprehensive information on isolation, production and purification of catalases with different techniques from various microbial sources along with their types, structure, mechanism of action and applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocellulose from cotton cellulose was prepared by high pressure homogenization (HPH) in ionic liquids (1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The nanocellulose possessed narrow particle size distribution, with diameter range of 10–20 nm. Weight average molecular weight (Mw) of nanocellulose treated by HPH was lower (173.8 kDa) than the one ILs treated cellulose (344.6 kDa). X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and Solid-state CP/MAS 13C NMR measurements were employed to study the mechanism of structural changes, which suggested that network structure between cellulose chains were destructed by the shearing forces of HPH in combination with ionic liquids. The intermolecular and intra-molecular hydrogen bonds of cellulose were further destroyed, leading to the long cellulose molecular chains being collapsed into short chains. Therefore, the nanocellulose could provide desired properties, such as lower thermal stability and strong water holding capacity. Results indicated that it had great potential in the applications for packaging, medicines, cosmetics and tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The author isolated and characterized several Thraustochytrid strains from Indian and Australian marine biodiversity and compared these strains for their application in biodiesel and DHA production depend on their fatty acid profile. Strain having best productivity was further optimized for the coproduction of DHA and biodiesel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rainbow trout, Oncorhynchus mykiss, are intensively cultured globally. Understanding their requirement for long-chain polyunsaturated fatty acids (LC-PUFA) and the biochemistry of the enzymes and biosynthetic pathways required for fatty acid synthesis is important and highly relevant in current aquaculture. Most gnathostome vertebrates have two fatty acid desaturase (fads) genes with known functions in LC-PUFA biosynthesis and termed fads1 and fads2. However, teleost fish have exclusively fads2 genes. In rainbow trout, a fads2 cDNA had been previously cloned and found to encode an enzyme with Δ6 desaturase activity. In the present study, a second fads2 cDNA was cloned from the liver of rainbow trout and termed fads2b. The full-length mRNA contained 1578 nucleotides with an open reading frame of 1365 nucleotides that encoded a 454 amino acid protein with a predicted molecular weight of 52.48 kDa. The predicted Fads2b protein had the characteristic traits of the microsomal Fads family, including an N-terminal cytochrome b5 domain containing the heme-binding motif (HPPG), histidine boxes (HDXGH, HFQHH and QIEHH) and three transmembrane regions. The fads2b was expressed predominantly in the brain, liver, intestine and pyloric caeca. Expression of the fasd2b in yeast generated a protein that was found to specifically convert eicosatetraenoic acid (20:4n-3) to eicosapentaenoic acid (20:5n-3), and therefore functioned as a Δ5 desaturase. Therefore, rainbow trout have two fads2 genes that encode proteins with Δ5 and Δ6 desaturase activities, respectively, which enable this species to perform all the desaturation steps required for the biosynthesis of LC-PUFA from C18 precursors.