2 resultados para thiazolidinedione

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To examine the effects of rosiglitazone in intramyocellular lipid (IMCL) content in diabetic Psammomys obesus using novel electron microscopy technologies.

Background: P. obesus is an unique polygenic model of obesity and type 2 diabetes. Male diabetic P. obesus were treated daily with 5 mg/Kg Rosiglitazone by oral gavage for 14 days. Data were compared with a group of age-matched diabetic P. obesus treated with saline vehicle.

Methods: Assessment of insulin resistance and adiposity were determine before and after the treatment period by oral glucose tolerance test (oGTT) and dual energy X-ray absorptiometry (DEXA) analysis. We used a new scanning electron microscopy technology, (WETSEM) to investigate the effects of rosiglitazone administration on IMCL content, size and distribution in red gastrocnemius muscle.

Results: Rosiglitazone treatment improved glucose tolerance in P. obesus with no difference in the overall body fat content although a significant reduction in subscapular fat mass was observed. Rosiglitazone changed the distribution of lipid droplet size in skeletal muscle. Treated animals tended to have smaller lipid droplets compared with saline-treated controls.

Conclusions: Since smaller IMCL droplets are associated with improvements in insulin sensitivity, we propose that this may be an important mechanism by which rosiglitazone affects glucose tolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The influence of two peroxisome proliferator-activated receptor γ (PPARγ) ligands, a thiazolidinedione, rosiglitazone (RG) and the prostaglandin D2 metabolite 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) on the proliferation of human cultured airway smooth muscle (HASM) was examined.

2. The increases in HASM cell number in response to basic fibroblast growth factor (bFGF, 300 pm) or thrombin (0.3 U ml−1) were significantly inhibited by either RG (1–10 μm) or 15d-PGJ2 (1–10 μm). The effects of RG, but not 15d-PGJ2, were reversed by the selective PPARγ antagonist GW9662 (1 μm).

3. Neither RG nor 15d-PGJ2 (10 μm) decreased cell viability, or induced apoptosis, suggesting that the regulation of cell number was due to inhibition of proliferation, rather than increased cell death.

4. Flow-cytometric analysis of HASM cell cycle distribution 24 h after bFGF addition showed that RG prevented the progression of cells from G1 to S phase. In contrast, 15d-PGJ2 caused an increase in the proportion of cells in S phase, and a decrease in G2/M, compared to bFGF alone.

5. Neither RG nor 15d-PGJ2 inhibited ERK phosphorylation measured 6 h post mitogen addition. The bFGF-mediated increase in cyclin D1 protein levels after 8 h was reduced in the presence of 15d-PGJ2, but not RG.

6. Although both RG and 15d-PGJ2 can inhibit proliferation of HASM irrespective of the mitogen used, only the antiproliferative effects of RG appear to be PPARγ-dependent. The different antimitogenic mechanisms of 15d-PGJ2 and synthetic ligands for PPARγ may be exploited to optimise the potential for these compounds to inhibit airway remodelling in asthma.